Question 1. Let \(a, b \in \mathbb{R} \).

(a) Show that if \(a + b \) is rational, then \(a \) is rational or \(b \) is irrational.

(b) Use (a) to show that if \(a + b \) is rational, then \(a \) and \(b \) are both rational or both irrational.

In class on Monday, we learned of boundedness, the supremum/infimum, and the Completeness Axiom.

Given a bounded set \(S \subset \mathbb{R} \), a number \(b \) is called a \textit{supremum} or \textit{least upper bound} for \(S \) if the following hold:

(i) \(b \) is an upper bound for \(S \), and

(ii) if \(c \) is an upper bound for \(S \), then \(b \leq c \).

Similarly, given a bounded set \(S \subset \mathbb{R} \), a number \(b \) is called an \textit{infimum} or \textit{greatest lower bound} for \(S \) if the following hold:

(i) \(b \) is a lower bound for \(S \), and

(ii) if \(c \) is a lower bound for \(S \), then \(c \leq b \).

If \(b \) is a supremum for \(S \), we write that \(b = \sup S \). If it is an infimum, we write that \(b = \inf S \).

We were also introduced to our tenth and final axiom, the \textit{Completeness Axiom}. This axiom states that any non-empty set \(S \subset \mathbb{R} \) that is bounded above has a supremum; in other words, if \(S \) is a non-empty set of real numbers that is bounded above, there exists a \(b \in \mathbb{R} \) such that \(b = \sup S \).

Question 2. Show that if a set \(S \subset \mathbb{R} \) has a supremum, then it is unique. Thus, we can talk about \textit{the} supremum of a set, instead of the \textit{a} supremum of a set.

Question 3. Let \(S \) be a non-empty subset of \(\mathbb{R} \).

(a) Let \(-S = \{ -x \in \mathbb{R} \mid x \in S \} \). Show that \(S \) has a supremum \(b \) if and only if \(-S \) has an infimum \(-b \).

(b) Use (a) to show that if \(T \) is a non-empty set that is bounded below, then \(T \) has an infimum.

Question 4. Prove the following \textit{Comparison Theorem}: Let \(S, T \subset \mathbb{R} \) be non-empty sets such that \(s \leq t \) for every \(s \in S \) and \(t \in T \). If \(T \) has a supremum, then so does \(S \) and,

\[\sup S \leq \sup T. \]

Question 5. Consider the set

\[S = \left\{ \frac{1}{n} \mid n \in \mathbb{Z}_+ \right\}. \]

(a) Show that max \(S = 1 \).

(b) Show that if \(d \) is a lower bound for \(S \), then \(d \leq 0 \). [Hint: A proof by contradiction might be helpful, as well as the Archimedean Property.]

(c) Use (b) to show that \(0 = \inf S \).

Question 6. Consider the set

\[T = \left\{ (-1)^n \left(1 - \frac{1}{n} \right) \mid n \in \mathbb{Z}_+ \right\}. \]

(a) Show that 1 is an upper bound for \(T \).

(b) Similar to 5b, show that if \(d \) is an upper bound for \(T \), then \(d \geq 1 \).

(c) Use (a) and (b) to show that supp \(T = 1 \).