Math 232 - Calculus IV
Homework due May 4

Given a vector field \(\mathbf{F}(x, y, z) \) on a surface \(S \), we can find its surface integral

\[
\iint_S \mathbf{F}(x, y, z) \cdot d\mathbf{S}.
\]

To do so, we first parameterize \(S \) via

\[
T(u, v) = \langle x(u, v), y(u, v), z(u, v) \rangle,
\]
defined on \(R \) and then compute

\[
\iint_S \mathbf{F}(x, y, z) \cdot d\mathbf{S} = \iint_R \mathbf{F}(x(u, v), y(u, v), z(u, v)) \cdot (T_u \times T_v) \ dudv.
\]

The choice of normal vector \(T_u \times T_v \) versus \(T_v \times T_u \) give the two different orientations on an orientable surface \(S \).

Question 1. Compute the following surface integrals of vector fields.

(a) \(\iint_S \langle x, y, z \rangle \cdot d\mathbf{S} \) across the sphere \(S \) of radius \(a \) given by \(x^2 + y^2 + z^2 = a^2 \), oriented with outward pointing normal vector.

(b) \(\iint_S \langle 0, 0, z \rangle \cdot d\mathbf{S} \) across the sphere of radius \(a \) in the first octant \((x, y, z \geq 0) \) oriented with outward pointing normal vector.

(c) \(\iint_S \langle x, y, z \rangle \cdot d\mathbf{S} \) across the cylinder \(x^2 + y^2 = 1 \) cut by the planes \(z = 0 \) and \(z = a \) with outward pointing normal vector.

(d) \(\iint_S \langle xy, 0, -z \rangle \cdot d\mathbf{S} \) across the cone \(z = 2\sqrt{x^2 + y^2}, 0 \leq z \leq 2 \) with normal vector pointing away from the \(z \)-axis.

We can relate a line integral of a vector field \(\mathbf{F} \) on a closed curve \(C \) with a surface integral on a surface \(S \) by Stokes’ Theorem. If \(S \) is an oriented surface with boundary \(C \), oriented according to the right-hand rule, then

\[
\oint_C \mathbf{F} \cdot d\mathbf{s} = \iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S}.
\]
Question 2. Compute the line integral

\[\oint_C \left< \sin x - \frac{y^3}{3}, \cos y + \frac{x^3}{3}, xyz \right> \cdot ds, \]

where \(C \) is the circle of radius 1 on the plane \(z = 1 \) centered about the \(z \)-axis, oriented counterclockwise when viewed from above. To do this, use Stokes’ Theorem to transform this into a surface integral on the flat disk of radius 1 whose boundary is \(C \).

Question 3. Use Stokes’ Theorem to compute

\[\oint_C \left< 2y, 3x, -z^2 \right> \cdot ds, \]

where \(C \) is the circle \(x^2 + y^2 = 9 \) in the \(xy \)-plane, oriented counterclockwise when viewed from above.

Similar to Stokes’ Theorem, we can relate a surface integral of a vector field with a triple integral. Let \(W \) be a three-dimensional subset of \(\mathbb{R}^3 \) with boundary \(S \), oriented outward. Then,

\[\iint_S \mathbf{F} \cdot dS = \iiint_W \nabla \cdot \mathbf{F} \, dV. \]

Question 4. Use the Gauss Divergence Theorem to compute the following surface integrals of vector fields.

(a) \[\iint_S \left< x^2, y^2, z^2 \right> \cdot dS, \] where \(S \) is the cylinder \(x^2 + y^2 = 1 \), capped off at \(z = 0 \) and \(z = 4 \), oriented outward.

(b) \[\iint_S \left< y, xy, -z \right> \cdot dS, \] where \(S \) is the cylinder \(x^2 + y^2 = 4 \), capped off on the bottom at \(z = 0 \) and on top at the paraboloid \(z = x^2 + y^2 \), oriented outward.

(c) \[\iint_S \left< x^3, y^3, z^3 \right> \cdot dS, \] where \(S \) is the sphere of radius \(a \), oriented outward.

Question 5. Let \(S \) be a closed surface oriented outward, and let \(\mathbf{F} \) be any vector field. Use the Gauss Divergence Theorem to show that

\[\iint_S \nabla \times \mathbf{F} \cdot dS = 0. \]