Before you read Chapter 9 read pages 365-367 carefully. Note the examples A1 and A2. On the final exam you will have to construct one truth table. Suppose I gave you a choice to do either A1 or A2. Undoubtedly you would pick A2 if you wanted the table to be easy. This implies that A1 and A2 are different arguments. From one point of view this is true, but from another it is not.

What we will be learning in Chapters 9 and 10 will enable you to see that A1 and A2 are actually the same argument in disguise so to speak. The pages here show you that behind the scene so to speak, A1 and A2 have the same argument form.

\[p \supset q \]

\[p \quad / \quad \therefore q \]

This argument form was recognized to be valid back in the Middle Ages and to this day is referred to by its Latin name, modus ponens. The key point is this: Any argument that fits this form will be valid and we will not have to do a truth table. Imagine how you would feel if I gave A3 on the final exam and asked you to do a truth table! It might take a whole day. But if you look carefully, you should see this would be totally unnecessary. We can see at a glance that A3 is valid because it fits the form of modus ponens. A "dumb"
but very fast digital computer would break this argument down into a 64-line truth table and quickly run its program on page 351. It would be fast and appear to be intelligent. But it is just making a bunch of digital true and false decisions. A human being would/should do the same thing a child would when he or she sees a chair -- just recognize the pattern.

In Chapters 9 and 10 we are going to learn how to create valid reasoning trails using commonsense patterns. Modus ponens is a commonsense valid pattern of reasoning.

If Kanoe lives in Honolulu, then she lives on the island of Oahu.
Kanoe lives in Honolulu.
So, Kanoe lives on the island of Oahu.

\[H \supset O \]
\[H / \supset : O \]

If Smith passes the final exam, then he will pass the course.
Smith passes the final exam.
So, Smith will pass the course.

\[F \supset C \]
\[F / \supset : C \]

Now it is important that you read the pages 379-399. Pages 379-386 will give you an overview of what we will be doing after learning several steps in the process of creating reasoning trails by using commonsense patterns. Pages 386-399 introduce you to Step 1. Step 1 will introduce 9 basic
commonsense patterns of reasoning that are all valid. Notice that the first one is a repeat introduction to modus ponens.

What is important is that you read about each rule pattern carefully, but most important is that you stare at the contents of each box and ask yourself an honest question. Do you see how the three examples across the top of each box match the form or pattern below? If you don't, ask me or anyone else for help in the Laulima forum.

Be sure to follow the directions on page 399 and write all the patterns down on one sheet of pagers before trying the exercises on page 400. All you have to do on page 400 is name the pattern that applies, if any (some may be bogus and no rule pattern applies). For instance, do you see how #5 on page 400 fits the pattern of modus ponens (MP)?

\[\neg(A \land C) \supset (D \lor E) \quad p \supset q \]
\[\neg(A \land C) \therefore D \lor E \quad p \therefore q \]

After you finish this exercise, check your answers and then try the practice quiz. Notice that the practice quiz suggests you should be able to finish in five minutes or less. It is important that you get this fast, otherwise you will have a very difficult time with Step 2. So, be sure to put some quality time into the boxes for each rule. If you have a lot of trouble, you may have to write each exercise on page 400 on a card with the answer on the back of the card. Then shuffle-up the cards and repeatedly drill yourself until you can recognize each one at a glance.

All together there will be six (6) steps covered in Chapters 9
and 10. Each step after Step 1 requires that you have mastered the previous step. So, you will not be a very happy camper if you don't put the time in on Step 1.

C9 (S1) supplement for Essential Logic
Ronald C. Pine