Primary Production

Primary Producers
• Largely photosynthetic
 – Conversion of light energy into chemical energy
 – Need light, CO₂ and photosynthetic pigment
 – Produces O₂ and glucose
 – Pigments include chlorophylls, xanthophylls (particularly fucoxanthin),
 carotenes and phycobilins
 \[\text{CO}_2 + \text{H}_2\text{O} + \text{light} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + \text{O}_2 \]

More Primary Producers
• Several important roles
 – Capturing energy and making it available for living organisms
 – Manufacturing O₂ for respiration
 – Recycling of carbon (CO₂) following respiration

Trophic Level Energy Transfer (graphic)
• 5-20% (average of 10%) of energy passed to next level
• Creates pyramid

Photosynthesis & Respiration (graphic)
Carbon Recycling (graphic)

Taxa of Primary Producers
• Includes all three Domains
 – Bacteria – Some bacteria photosynthetic (other autotrophic bacteria are
 chemosynthetic), Cyanobacteria
 – Archaea – Primarily chemosynthetic
 – Eukaryota –
 • Kingdom Protista – singled celled organisms
 – Plant-like - Bacillariophyta, Dinoflagellata, Chrysophyta
 – Animal-like – Foraminafera, Polycystina, Ciliophora
 • Kingdom Plantae: Phyla Chlorophyta, Phaeophyta, Rhodophyta, Magnoliophyta

Taxa of Primary Producers (graphic)

Measuring Primary Productivity (graphic)
• Amount of organic material produced per m² of surface area

Measuring Primary Production
• Gross PP - total amount of organic material produced
 – gC/m²/unit time (day or yr) - based on sea surface
• Net PP - Gross minus the amount needed for cellular respiration of the primary
 producers
• Light - Dark bottle technique
 – Use of O₂ measurements - problem due to zooplankton utilizing oxygen too
 – Use of C¹⁴ (bicarbonate labeled with C¹⁴)
Global Primary Production (graphic)
Global Primary Productivity (graphic)
Other Measures
• Standing stock (crop) - a measure of the existing amount of living photosynthetic material
 – Typically used for terrestrial measurements
 – Seaweeds more reasonable to measure than phytoplankton
 – However, phytoplankton play greater role in primary production
 – Thus not a good measure
 – More recent technique of using amount of chlorophyll as an indicator of standing stock

More Other Measures
• Use of satellites - coastal zone color scanner (CZCS) monitoring chlorophyll concentration, both distribution and abundance

Other Measures (graphic)
Variation in Primary Production
• Dependent on physical, chemical, and biological characteristics of environment
• Theoretically populations can grow unchecked (exponential growth)
• However, biological systems always have some “limiting factor”
 – For phytoplankton - light, nutrients and/or grazing

Effects of Limiting Factors (graphic)
Light
• Light - depth of photic zone dependent on sun’s position, atmospheric and water characteristics (absorption and transparency)
 – May be a few meters (coastal) to 200 m
 – Critical depth - rate of photosynthesis balanced by cellular respiration (no net photosyn.) - less than the photic zone

Effect of Light Intensity on Rate of Photosynthesis (graphic)
Photosynthetic Response of Two Phytoplankton Species (graphic)
Photosynthesis
• Light reaction requires the pigment to absorb light energy and convert it to a chemical form (ATP or NADPH$_2$)
• Dark reaction utilizes chemical form of energy to manufacture carbohydrate compounds
• Chlorophyll a absorbs light in reds (700nm) and blues (400nm)
• Problem for marine photosyn. since red is absorbed by water quickly

More Photosynthesis
• Need for accessory pigments which absorb energy and pass it chlorophyll
 – Fucoxanthin (xanthophyll) - in Phaeophyta, Chrysophyta and Dinoflagellata (550nm)
– Phycoerythrin (pcobilins) in Rhodophyta and Cyanobacteria - blues (400nm)
• Marine green algae and grasses (dependent on chlorophyll) have large amounts of pigment and supplement with chlorophyll b

Nutrients
• Need components for photosynthesis and for structural components
 – Include C, H, O, N, P and trace elements
• C, H, O readily available as carbonate (CO$_3^{2-}$), bicarbonate (HCO$_3^-$) and water (H$_2$O)
• N available as nitrate (NO$_3^{-}$), nitrite (NO$_2^{-}$), ammonium (NH$_4^+$) and N$_2$
 – N$_2$ requires nitrogen fixation
• P available as phosphate (PO$_4^{3-}$)

More Nutrients
• General loss of nutrients from photic zone through sinking
 – Requires vertical mixing - wind, wave and tidal mixing vs. upwelling
 – Upwelling caused by offshore winds, coastal currents, and equatorial Coriolis effect of water moving N & S from equator
 – Langmuir cells (parallel with wind direction) may hold nutrients near surface

Even More Nutrients
• El Niño - normal weather based on weather pattern that brings warm surface current from N along Peruvian coast in their summer - causes rainy, humid, warm weather and blocks typical upwelling in the area
 – If El Niño goes further S or stays longer, there’s a dramatic effect on marine productivity in the region (also known as the El Niño Southern Oscillation or ENSO)
 – La Niña is the more normal form of southern oscillation

Global Upwelling Areas (graphic)
Vertical Distribution of Nitrate (graphic)

Grazing
• Grazers are herbivores
• Herbivore population dependent on presence and numbers of phytoplankton/primary productivity
• Populations of both vary in a dependent fashion (can be cyclical activity of overgrazing and starvation)

Global Zooplankton Populations (graphic)
Effects of Grazing (graphic)

More Grazing
• Movements of grazers follow phytoplankton (sometimes a preferred species)
 – Copepods and their "red" and "blue dance"
 • Red - move vertically (when chlorophyll in phytoplankton above absorbs blue light)
 • Blue - move horizontally (when little phytoplankton above)
Seasonal Variations

• Dependent on light, nutrients and grazing
• No activity when there is no/little light - may be in cyst form during absence
• Nutrient supply dependent on mixing - when thermocline or pycnocline is absent (and other special sources)
• Finally affected by population of grazers
• Temperate example

Limiting Factors of Photosynthesis (graphic)
Seasonal Variations in Thermocline (graphic)
Seasonal Population Variations (graphic)
Effects of Seasonal Light Conditions (graphic)
More Seasonal Variations (graphic)