Methods: Molecular Techniques

OEST 740
043008
Introduction

Molecular Biology – investigates the structure and function of biological molecules

- Fundamental Data
- Not limited by cultivation
- Rapid diagnostics
- Multi-level Analysis
 - From community to single cell
Introduction

Levels of Analysis
- Detection of gene or gene product
 - Functional capacity
- Compare gene sequences
 - Identity
 - Phylogeny and Evolution
 - Adaptation
- Monitor Gene expression
 - Responses to environment or mode of growth
 - (i.e. biofilm phenotype)
Shotgun Method

- Crude method of sequencing or cloning
- Primary step does not involve physical map of source clone
 - unguided
- Sequence contig multiple times
PCR

- Polymerase Chain Reaction
- Applications
 - Directed cloning/sequencing
 - Community Fingerprint
 - Number of Gene Copies

30 - 40 cycles of 3 steps:

Step 1: denaturation
1 minute 94 °C

Step 2: annealing
45 seconds 54 °C
forward and reverse primers !!!

Step 3: extension
2 minutes 72 °C
only dNTPs

(Andrzej Verinckx 1999)
Recombinant DNA Clones

1. **Vector and Donor DNA**
 - Vector and donor DNA are digested (cleaved) with restriction enzyme.
 - Overhangs are produced.

2. **Mixing and DNA Ligase**
 - DNA ligase is added, sealing the overhangs.
 - Recombinant DNA molecules are formed.

3. **Introduction into Bacterial Cells**
 - Recombinant DNA molecules are introduced into bacterial cells.
 - Bacterial chromosome expands.

4. **Replication and Cloning**
 - Recombinant DNA molecules replicate, and cells divide.
 - Clones are produced.

© 2002 Encyclopedia Britannica, Inc.
Genetic Sequencing

- 16s rRNA
 - Phylogenetic analysis
 - Conserved Regions
 - Cloning and sequencing
 - Variable regions
 - Information
- Functional gene sequencing
Mutant Type vs. Wild Type

- Direct manipulation of genes using molecular cloning and transformation to alter structure and characteristic of genes
 - Isolation of genes
 - Insertion of genes into transfer vector
 - Transformation
- Recombinant DNA technology, gene splicing, gene modification, etc.
- Attachment, structural development, QSS
Mutant vs. Wild Type

- **Loss of Function experiments**
 - How: gene knockout
 - Why: pinpoint phenotypes controlled by genes

- **Gain of functions – increased function**

- **Tracking –**
 - How: WT gene replaced with ‘fusion’ gene
 - Why: Visualize gene modifications

- **Gene Expression**
 - How: Reintroduce gene promoter with protein coding region replaced by reporter gene
 - Why: Where and When data
DGGE

- Denaturing Gradient Gel Electrophoresis
 - Large population analysis
 - Fingerprint of genetic diversity
 - Comparison allows the visualization of presence or absence of particular species.

[Diagram showing DGGE gel with bands for different samples and a legend indicating GC Clamp.]
DGGE

1. Excise

2. Clone
 Vector

4. Sequence

5. Identify
DNA Micro-array

- Snap-shot of gene expression
- Differential Gene Express – Biofilm phenotype
 - Resistance
DNA Micro-array

Make cDNA reverse transcript
Label cDNAs with fluorescent dyes

Control

Experimental

Hybridization to microarray
Laser excitation at dye-specific Hz

Laser emission

Computer calculates ratio of intensity

Principle of cDNA microarray assay for gene expression
(after Gibson & Muse 2002)

Red = "up-regulation"
Green = "down-regulation"
Black = constitutive expression
Confocal Scanning Laser Microscopy

- In-situ analysis
 - Green Fluorescent Protein (GFP)
 - Pro-spatial and temporal resolution
 - Con-Somewhat limited
 - In-situ gene expression
 - FISH
 - Require molecular probes
Summary

- Molecular techniques are invaluable to understanding the structure of biofilms on a biogeochemical level.

- Providing useful information to the questions posed in biofilm research as to who, where, when and how.

- As well as, identifying how biofilm microbial populations respond to various environmental variability and stress.