Note: Some of the information provided on products/pesticide use below, is from other states and thus the products may have no current Hawaii registration. Always read the label before making any product/pesticide applications. Due to environmental effects the effectiveness of particular products may also vary across locations. Also note that recommendations developed for northern climates may not be directly applicable to Hawaii.

Index

0.0. Last minute: USDA Livestock compensation Program
1.0 CTAHR solves the mystery of Taro Pocket Rot
2.0. 24 (c) Registration for fruit crops and Orchards, HI
3.0 Goal 24 (c) Registration for banana in Hawaii
4.0 Gramoxone 24c reg for cucurbits and macadamia (Hawaii)
5.0 HI Pesticide Information Retrieval System (HPIRS) on WEB
6.0 POTATO MOP-TOP VIRUS ALERT
7.0 Cutworms on seedlings (Mass)
8.0 Food Safety during Harvest (Mass)
9.0 Caffeine for snail control?
10.0 Summary of the 2002 farm bill
11.0 Late and Early blight (Vermont)
12.0 Root dip with Quadris on Strawberries in N. Carolina?
12.1. Onion thrips
13.0 Spider mite control on vine crops (Ohio)
14.0 Avaunt update (Ohio)
15.0 Messenger Update (Mass)
16.0 Does spraying for aphids control viral infections? (Mass)
17.0 Crop yields will drop if erosion continues
18.0 Fruit coating as biofungicide
19.0 Biocontrol corner: Vaccine for nematode control?
20.0 Organics Corner: Labelling according to Fed Standards
21.0 E-colli on Romaine lettuce (Washington State)
22.0 Guthion Phase-out
23.0 Updated contact info for HOFA (HI Organic Growers Assoc.)
24.0 IPM Symposium/Workshop April 2003
25.0 Workshop on Integrated Water Resource Management
26.0 EPA Agriculture Compliance Center Web site
27.0 Grants for New Farmers in New England- a good idea?
28.0 Promoting vibrant economies in Rural America
29.0 Sustainable Ag Conference in North Carolina, 10-02
30.0 Upcoming events- Hawaii
31.0 Flower and Garden Fest Oct. '02, Mississippi
32.0 Upcoming events- Out-of-state

0.0. Last Minute: USDA Livestock compensation program

Press Release:

FACT SHEET
UNITED STATES DEPARTMENT OF AGRICULTURE
Office of Communications News Room 460-A
Washington, DC 20250-1300
Internet: News@usda.gov Phone: 202-720-9035

Release No. 1fs0392.02

LIVESTOCK COMPENSATION PROGRAM

ANIMALS INCLUDED

* Beef and dairy cattle, buffalo and beefalo (when maintained on the same basis as beef cattle), and sheep.

CRITERIA

* Those counties that have received primary disaster designation due to drought in 2001 or 2002. Counties which have disaster designation requests pending as of
September 19 and which are subsequently approved will also be eligible.

* Available statewide in seven States (Arizona, Montana, Nebraska, New Mexico, North Dakota, South Carolina, and Utah). Also available in specified counties in 30 other drought affected States, including: California, Colorado, Delaware, Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Michigan, Missouri, North Carolina, Nevada, New York, Ohio, Oklahoma, Oregon, Pennsylvania, South Dakota, Tennessee, Texas, Virginia, Vermont, Washington, Wyoming.

PAYMENTS

* Based on standard feed consumption data for each eligible type of livestock, the payment rate is $18.00 per animal consuming unit (indexed against beef cattle).

* Types of livestock adjusted by these factors:

 * beef cows: $18.00/head
 * dairy cows: $31.50/head
 * stockers: $13.50/head
 * buffalo and beefalo: $18.00/head
 * sheep and goats: $4.50/head

* Producers would be subject to $2.5 million gross income limit, and payments would be limited to $40,000 per person historical USDA limits.

SIGNUP

* Manual signup starts on or about October 1, 2002.

* Producers will certify the number of eligible animals owned as of June 1, 2002. The animals must have been owned for 90 days or more before and/or after June 1. Payment will be determined by multiplying the number of eligible animals by the respective payment rate. Payments
should be available shortly after a producer signs up.
(Lee Kunitake, USDA, e-mail Oct. 1, 2002).

1.0 CTAHR solves the mystery of Taro Pocket Rot

Jacqui Wright
Pocket rots have been a mysterious and highly destructive problem for taro growers for many years. In the past year, an important step in combating this problem was accomplished when pocket rot was reproduced for the first time. This was achieved using a new species of Phytophthora isolated from taro with pocket rot. The work, done in the laboratory of Dr. Janice Uchida in the Department of Plant and Environmental Protection Sciences, has come as a culmination of years of diligent detective work, commitment to community improvement, and a multidisciplinary problem-solving approach.
For growers who have suffered from heavy damage by pocket rots for years, a big mystery has been solved. More details and some good photographs can be found on the CTAHR Internet site: http://www.ctahr.hawaii.edu/ctahr2001/CTAHRInAction/Apr_02/TaroPocketRot.asp CTAHR is the College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa. (Pacific Pest Info Newsletter, SPC Plant Protection Service, Aug. 2002).

2.0 24 (c) Registration for fruit crops and Orchards, HI

The HI Dept. of Ag.'s Pesticides Branch issued two new 24(c) registrations. Here's a summary:

For growers of Tropical fruit and nut orchard crops (e.g., acerola, ambarella, blimbe, carob bean, cashew, date, fig, guava, imbu, jaboticaba, jujube, Indian jujube, natal plum, noni, olive, otaheite gooseberry, mountain papaya, persimmon, pomerac, rose apple, sentul, starfruit, surinam cherry, abiu, akee apple, atemoya, avocado, banana, biriba, breadfruit, canistel, cherimoya, custard apple, durian, feijoa, Governor's plum, ilama, imbe jackfruit, longan, lychee, mamey apple, mango, mangosteen, marmaladebox, monstera, naranjilla, papaya, passionfruit, pawpaw, pitaya,
pomegranate, prickly pear, pulasan, rambutan, sapodilla, black sapote, green sapote, mamey sapote, soursop, Spanish lime, star apple, strawberry pear, sugar apple, tamarind, wax jambu, macadamia nut, betel nut, coconut, pili nut, coffee, citrus).—use of the pesticide SIEGE PRO Fire Ant Bait (BASF Corp.; 241-322)—requires having a copy of HI-020003, valid 9/4/2002–9/3/2007—some notes:
• Place specified amount of pesticide into bait station.
• Place bait stations at specified spacing.
• Monitor ant activity either by visual or mechanical (e.g., traps) methods.
• For application in fields with actively foraging ants and for field border treatment (to prevent ants from re-infesting field).
• This is an agricultural pesticide so the Worker Protection Standard applies.

For growers of Tropical fruit and nut orchard crops (e.g., acerola, ambarella, blimbe, carob bean, cashew, date, fig, guava, imbu, jaboticaba, jujube, Indian jujube, natal plum, noni, olie, otaheite gooseberry, mountain papaya, persimmon, pomerac, rose apple, sentul, starfruit, surinam cherry, abiu, akee apple, atemoya, avocado, banana, biriba, breadfruit, canistel, cherimoya, custard apple, durian, feijoa, Governor's plum, ilama, imbe jackfruit, longan, lychee, mamey apple, mango, mangosteen, marmaladebox, monstera, naranjilla, papaya, passionfruit, pawpaw, pitaya, pomegranate, prickly pear, pulasan, rambutan, sapodilla, black sapote, green sapote, mamey sapote, soursop, Spanish lime, star apple, strawberry pear, sugar apple, tamarind, wax jambu, macadamia nut, betel nut, coconut, pili nut, coffee, citrus).—use of the pesticide AMDRO PRO Fire Ant Bait (BASF Corp.; 241-322)—requires having a copy of HI-020009, valid 9/4/2002–9/3/2007—some notes:
• Place specified amount of pesticide into bait station.
• Place bait stations at specified spacing.
• Monitor ant activity either by visual or mechanical (e.g., traps) methods.
• For application in fields with actively foraging ants and for field border treatment (to prevent ants from re-infesting field).
• This is an agricultural pesticide so the Worker Protection Standard applies.
The descriptions above are not the actual labeling.

*** At the time of application, the applicator must have a copy of the 24(c) labeling in his or her possession. The description (above) is only a summary of the 24(c) labeling. It is not a substitute for any 24(c) labeling.

*** The 24(c) labeling specifies an expiration date and is not valid after this date.

*** A 24(c) labeling issued for Hawaii is valid only in Hawaii.

*** The applicator must comply with all instructions and restrictions specified by both the 24(c) labeling and the container label.

The instructions and restrictions may cover any or all of the following:

• crop, object, or site that may be treated
• application method
• application timing
• preparing the crop, object, or site for treatment
• wearing protective clothing (for example, a long-sleeve shirt) and personal protective equipment (for example, a respirator)
• measuring, mixing, and loading pesticide into application equipment
• dosage or dilution of pesticide
• setting up, adjusting, and calibrating application equipment
• restricting entry by others into a treatment area
• cleaning up or securing treated area
• notifying other persons of hazards (for example, by training them, warning them, or by posting signs)
• storing, locking up, or disposing of the pesticide container
• washing up himself or herself after the treatment
• making and keeping records.

If you want a copy of the labeling, call or send me a request. Charles Nagamine Pesticide Risk Reduction Education Program Plant & Environmental Protection Sciences Dept. 3050 Maile Way, Gilmore 310, Honolulu, HI 96822 Ph. 808-956-6007, Fax 808-956-9675 (Ch. Nagamine, e-mail, 9-17-02).
3.0 Goal 24 (c) Registration for banana in Hawaii

The HI Dept. of Ag.'s Pesticides Branch issued 24(c) registration, HI-0200006, for: Goal 2XL (Dow AgroSciences; 62719-424) for Banana Plantings (permanently established, bearing and nonbearing).

Some notes:
• 1 day to harvest.
• 24 hour REI.
• Apply only with ground equipment.
• Chemigation prohibited.
• Do not feed or graze animals on any area treated with this product.
• Do not treat ditch banks or waterways.
• This is an agricultural pesticide so the Worker Protection Standard applies.

If you want a copy of the labeling, call or send me a request. Charles Nagamine Pesticide Risk Reduction Education Program Plant & Environmental Protection Sciences Dept. 3050 Maile Way, Gilmore 310, Honolulu, HI 96822 Ph. 808-956-6007, Fax 808-956-9675

The description above is not the actual labeling.
*** At the time of application, the applicator must have a copy of the 24(c) labeling in his or her possession. The description (above) is not a substitute for any 24(c) labeling. *** The 24(c) labeling specifies an expiration date and is not valid after this date. *** A 24(c) labeling issued for Hawaii is valid only in Hawaii. *** The applicator must comply with all instructions and restrictions specified by both the 24(c) labeling and the container label.

The instructions and restrictions may cover any or all of the following:
• crop, object, or site that may be treated
• application method
• application timing
• preparing the crop, object, or site for treatment
• wearing protective clothing (for example, a long-sleeve shirt) and personal protective equipment (for example, a respirator)
• measuring, mixing, and loading pesticide into application equipment
• dosage or dilution of pesticide
• setting up, adjusting, and calibrating application equipment
• restricting entry by others into a treatment area
• cleaning up or securing treated area
• notifying other persons of hazards (for example, by training them, warning them, or by posting signs)
• storing, locking up, or disposing of the pesticide container
• washing up himself or herself after the treatment
• making and keeping records.

Charles Nagamine Pesticide Risk Reduction Education Program Plant & Environmental Protection Sciences Dept. 3050 Maile Way, Gilmore 310, Honolulu, HI 96822 Ph. 808-956-6007, Fax 808-956-9675 (Charlie Nagamine, e-mail 8-12-02).

4.0 Gramoxone 24c reg for cucurbits and macadamia (Hawaii)

The HI Dept. of Ag.’s Pesticides Branch issued two new 24(c) registrations Here’s a summary:

The descriptions above are not the actual labeling.
*** At the time of application, the applicator must have a copy of the 24(c) labeling in his or her possession. The description (above) is only a summary of the 24(c) labeling. It is not a substitute for any 24(c) labeling.
*** The 24(c) labeling specifies an expiration date and is not valid after this date.
*** A 24(c) labeling issued for Hawaii is valid only in Hawaii.
*** The applicator must comply with all instructions and restrictions specified by both the 24(c) labeling and the container label.
The instructions and restrictions may cover any or all of the following:
• crop, object, or site that may be treated
• application method
• application timing
• preparing the crop, object, or site for treatment
• wearing protective clothing (for example, a long-sleeve shirt) and personal protective equipment (for example, a respirator)
• measuring, mixing, and loading pesticide into application equipment
• dosage or dilution of pesticide
• setting up, adjusting, and calibrating application equipment
• restricting entry by others into a treatment area
• cleaning up or securing treated area
• notifying other persons of hazards (for example, by training them, warning them, or by posting signs)
• storing, locking up, or disposing of the pesticide container
• washing up himself or herself after the treatment
• making and keeping records.

If you want a copy of the labeling, call or send me a request.

Charles Nagamine Pesticide Risk Reduction Education Program Plant & Environmental Protection Sciences Dept. 3050 Maile Way, Gilmore 310, Honolulu, HI 96822 Ph. 808-956-6007, Fax 808-956-9675
(Charlie Nagamine, e-mail, Aug. 22, 2002).

5.0 HI Pesticide Information Retrieval System (HPIRS) on WEB

Cathy Tarutani (PEPS) reports that the Hawaii Pesticide Information Retrieval System (HPIRS) is now a collaborative effort with the National Pesticide Information Retrieval System at Purdue University. HPIRS is now just as current as the national database which is updated weekly. The website is:
6.0 POTATO MOP-TOP VIRUS ALERT

The Canadian Food Inspection Agency (CFIA) has announced restrictions on the importation of U.S. seed potatoes due to an outbreak of the Potato Mop Top Virus (PMTV). The Mop-Top virus was first found in July at the University of Maine Aroostook Research Farm in Presque Isle. According to the Canadian Food Inspection Agency (CFIA) the virus has also been found in eight other major potato producing states including Florida, Idaho, North Carolina, Virginia, Oregon, Washington, Maryland and California. The virus already has been discovered in Canada, Europe, parts of Asia, and South and Central America. The USDA is treating the virus as a quarantine pest.

We urge potato growers to watch for symptoms of this virus and get a diagnosis confirmed if they think they might have it. This is a serious potato disease. The virus poses no threat to humans but can ruin 50% of a potato crop. The virus is vectored a soil-borne organism, and this vector can live in the soil for up to ten years. Worse yet, quarantines can reduce the value of a state’s crop. The good news is the virus does not spread as easily as some other potato diseases, and spuds harvested this fall are going to be shipped, albeit with restrictions.

It is spread through the fungus associated with Powdery Potato Scab and cannot be spread through the air or aphids. Therefore, it should be easy to contain when it is identified.

Identification: PMTV can make potato plant leaves look feathery, and causes molting or stunting of the part of the potato that’s above the ground, inspiring the label originally applied to the unruly mop-top hairdos worn by the Beatles during their early years. The virus severely damages the potato; causing vein-like rot which appears as discoloration or rings on the inside of an infected spud making
them unsuitable for the fresh potato market as well as potato chip and French fry production.

Diagnosis: Please call the Disease Diagnostic Lab (413-545-1045) if you suspect that this disease is present in your field. The lab will send someone out to take a sample.

Control: How long the virus has been in the country is unclear, and it could have been here for some time. Initially, control efforts will focus on containing the disease. In Maine, an emergency quarantine order by the US Department of Agriculture immediately went into effect barring the movement of machinery, potatoes, or soil from the property and requiring workers to disinfect their clothes and boots for any fields confirmed to have the virus.

Restrictions in Shipping: The CFIA will require state-of-origin declarations on all potatoes from the United States. The agency will also require imported potatoes for processing to carry statement of origin, truck washing and identification and vehicle cleanliness certificates. Processors will also be required to follow containment, disinfection and waste disposal protocol for potatoes imported from the states affected by PMTV. Adapted by S. DeGray & R. Hazzard from David Sharp, Associated Press, Boston Globe & Spudman Magazine, 8/20/02. (Ruth Hazzard, ed., Vegetable IPM Newsletter University Of Massachusetts Extension Vegetable Program August 22, 2002, VOLUME 13, NUMBER 17)

7.0 Cutworms on seedlings (Mass)

CUTWORMS ON SEEDLINGS
We have had reports of cutworm damage in direct-seeded and transplanted corn and brassicas. These can also cause damage in peppers, tomatoes, and eggplants.

Monitoring. Scout weed borders before plantings go in. Check newly transplanted crops to look for damage: clipped stems or leaf feeding (some cutworms climb up into foliage). If you find clipped transplants, you can usually find the larva in the soil near the plant.
Estimate % stand loss to determine need for a spray. In sweet corn, Rutgers suggests inspecting 20 plants at 5 sites (total 100 plants). Threshold is 3% (3 or more plants damaged). Damage may be more concentrated around field edges.

Life cycle and identification. There are many species of cutworms that attack vegetables including black cutworm, variegated cutworm, dingy, spotted, dark-sided, or glassy cutworm. Spotted and variegated cutworms climb and feed above-ground, and black cutworms climb when they are young (less than half an inch long). Cutworms can be difficult to identify. Variegated cutworm has some pale yellow markings on its back, while black cutworm is nearly uniform gray to black with a greasy, rough appearance.

Adults of all cutworms are moths with dark gray forewings, often with various lighter or darker markings, and lighter hindwings. They are in the same group of moths (noctuids) as the corn earworm, fall armyworm, and cabbage looper, but with very different life cycles and habits. They are capable of migrating long distances but it is very likely our own resident populations which are causing problems. Black, spotted and variegated cutworm have at least two generations per year in this region.

Black and variegated cutworms spend the winter in the larval or the pupal stage as deep as 5 inches (12 cm) down in the soil. Spotted and dingy cutworms overwinter only as larvae. It is these larvae that are present in the soil at planting time, ready to feed on early spring transplants and seedlings. They may be of varying sizes. Young black cutworm larvae are more likely to feed on plant foliage. Older larvae feed on stems near the soil line during the night and descend into the soil during the day. They clip stems of young seedlings and are reported to feed on the wilted plant material. Larval development takes about a month (28-34 days).

Adults emerge from overwintered pupae in May or June, and from pupae of spring-feeding larvae later in the season. At one site in Easthampton, a pheromone trap has been catching 10-20 black cutworm moths per week for the past two weeks. Females lay eggs on grass leaves, weeds, or the soil surface. Attractive habitats include weedy or grassy areas, and alfalfa; corn and soybeans are
among the least attractive hosts. Black cutworm moths are reported to select low spots in the field, that has been waterlogged or flooded for egg laying. Egg are also concentrated on low-lying vegetable such as chickweed, curly dock, shepherd’s purse, peppergrass, mustards such as yellow rocket, or plant residue from the previous year’s crop. Note that the above list includes lots of winter annual weeds that grow in the fall – weeds that we often overlook.

Cultural Management. Weedy land harbors the most cutworms, as the adult moths seem to prefer dense plant cover for egg laying. Crop residues may also attract higher populations. Therefore, crops that follow weedy crops, alfalfa, or no-till crops are more likely to be damaged by cutworms. Plant early transplants into fields that had low weed pressure the previous year, especially in the fall, or where crop residue was tilled under in the fall. There seems to be little information about specific relationships between what cover crops are planting in the fall, and cutworm infestations in the following year.

Plow fields in spring and keep weed free for at least two weeks before planting to starve young larvae and reduce egg-laying. Avoid planting susceptible crops close to sod, alfalfa or fallow areas. Summer plowing disturbs eggs and larvae and raises them to the soil surface where they are more vulnerable to predation and dessication. Fall plowing will do the same. Plan rotations to avoid planting vulnerable crops after a grassy sod, and plow sod fields in later summer or early fall. Cultivate frequently to injure and expose hiding cutworms to predators. Daily search and destroy missions -- by hand -- are a time-honored “biological” management for small plantings!

Chemical Management. Postplanting treatments for corn include Asana, Baythroid, Lorsban, Ambush/Pounce or Warrior. For cole crops, Ammo, Asana, Lannate, Lorsban and Warrior are labeled on certain crops. A new material, Confirm, is labeled for cutworms on cole crops. Check labels for restrictions. For best results apply in the evening just prior to active feeding. Consult the New England Vegetable Management Guide for more details.
Biological management. Several predators and parasites have been identified, however none have been commercialized for release against these pests. At Iowa State University, a new baculovirus has been isolated from black cutworm, which is highly active and has potential as an alternative to chemical control. Soil applications of nematodes (Steinernema carpocapsae) can reduce cutworms and last for anywhere from 8 days to several weeks, according to various research trials. Good soil moisture favors survival. Repeat applications may be needed.

Other organic options. This is a tough pest for organic growers as no effective insecticides when outbreaks occur. Strategies such as cardboard or tinfoil collars are impractical on a commercial scale. Eric Sideman, technical advisor for Maine Organic Farming and Gardening Association (MOFGA) reports that insecticidal baits have been effective. He recommends a recipe using a very concentrated solution of Bt, mixed with bran and a bit of molasses. It can be sprinkled on the ground near the crops or made into patties that are placed along the rows. Bt sprays (ie, Bt aizawi or kurstaki directed at plant stems and foliage) are reported to work sometimes, but not consistently, possibly because large cutworms do not ingest a big enough dose of BT to stop feeding and die before they have caused damage.

--Ruth Hazzard (resources: Vern Grubinger (UVM), Brian Caldwel (NYS-NOFA) ,Eric Sideman(MOFGA), Rex Dufour (ATTRA))
(Ruth Hazzard, editor., Vegetable IPM Newsletter, UNIVERSITY OF MASSACHUSETTS EXTENSION VEGETABLE PROGRAM, MAY 30, 2002. VOLUME 13, NUMBER 5)

8.0 Food Safety during Harvest (Mass)

FOOD SAFETY DURING HARVEST
Good sanitation practices during harvesting can help to reduce the risk of microbial contamination of fresh produce. Soil, fertilizers, harvesting equipment, water, workers, pets and pests can all be sources of harmful microorganisms that can cause food-borne illness. Therefore it is important that grower’s set up measures to help prevent these sources of microorganisms from contaminating
produce. Good sanitation practices include cleaning and sanitizing all food contact surfaces, encouraging worker hygiene and training and keeping animals out of fields, orchards and packing house.

What do we mean by “food contact surface”, “cleaning” and “sanitizing”? A food contact surface is a surface that comes into contact with the fresh produce any time during harvesting, packing or transporting. Cleaning means to remove soil and residues from food contact surfaces by washing and scrubbing with soap or detergent, then rinsing with clean potable water. Sanitizing means to treat a food contact surface with a sanitizing solution that will kill most microorganisms. Surfaces must be cleaned first before they can be sanitized. Soil and soap residues can inactivate the sanitizing solution. A sanitizing solution is made by mixing a small measured amount of a sanitizer with potable water according to the directions given by the manufacturer. A sanitizer is a chemical compound designed to kill microorganisms. The most commonly used are chlorine bleach and quaternary ammonium compounds.

Take a walk through your harvesting operation and check for these signs of potential food safety hazards: Pets, livestock, poultry or wildlife in fields; Human or animal waste in fields and orchards; Sick or unclean workers; Dirty harvest containers; Produce laden with dirt or manure; Broken and dirty harvest equipment. What can you do? Wash, rinse and sanitize, when possible and practical, all crop containers before harvest. When sanitizing, use an approved sanitizer according to the manufacturer’s directions. Common sanitizers include chlorine bleach and quaternary ammonia. Store sanitizers and solutions away from the produce. Cover harvest containers to keep crop dust, animals, insects and birds out. Clean harvesting aids each day with potable water. This means they should be free of visible soil and residue. Keep harvesting equipment in good working order. Set up a maintenance schedule. Train workers to follow good hygiene practices. Do not haul produce in equipment that has been used to transport garbage, manure or animals.

Food Safety During Packing: Food safety in packing follows the same principles as in harvesting. Ideally the building used for packing and other post harvest operations should be constructed of
materials that are easy to clean. The building should be designed to keep rodents and insects out. Counters, tables and other work areas should be made of materials that are easy to clean and sanitize such as stainless steel or other smooth, rust free, nonporous material. Plumbing fixtures should be capable of handling the crop, cleaning equipment and personal hygiene. Hot and cold water should be available with mixing sinks to allow for tempering the water. It is a good idea to clean and sanitize packing areas, floors, equipment and food contact surfaces on a daily basis.

Take a walk through your packing facility and check for these signs of potential food safety hazards: Building used for livestock at any time; Signs of rodent, bird or insect infestation; Holes in screens, windows and doors; Chemicals stored near food or produce; Food containers not labeled or dedicated for use; Dirty, rusty and rough food containers, food surfaces, floors and equipment; Containers stored on floor without covers; Hoses used to wash food contact surfaces and equipment; No hand-washing sink available; No running hot or cold water available for cleaning; Water supply from untested well or surface water; Workers bringing in manure and dirt on clothing and footgear.

What can you do?: Remodel, clean and sanitize your building if it is or was used for livestock; Install proper plumbing and fixtures to allow for hot and cold running water, mixing of water for cleaning and sanitizing. Use public water supply or tested and treated well water when cleaning and sanitizing in the packing room. Use food grade containers and store produce covered. Screen and seal windows and doors to keep rodents, birds and insects out. Invest in packing equipment, containers, utensils and food contact surfaces that are made of food grade materials and that are easy to clean and sanitize. Set up a cleaning and sanitizing schedule for the floor, food contact surfaces, containers, equipment and utensils. Simply answer these questions: What should be cleaned? What sanitized? When should it be cleaned and sanitized? How should it be cleaned and sanitized? Who should clean and sanitize it? Who will monitor who, when, where and how? Adapted from the New England Extension Food Safety Consortium by Craig Hollinsworth. (Ruth Hazzard, ed., Univ. Massachusetts Vegetable IPM Newsletter JUNE 20, 2002, VOLUME 13, NUMBER 8)
Caffeine can repel or kill snails that might otherwise eat and ruin plants, Agricultural Research Service scientists report in the June 27, 2002 issue of the scientific journal Nature. An environmentally acceptable, natural compound, caffeine has great potential as an alternative to today's snail- and slug-killing chemicals. That's according to Robert G. Hollingsworth, a research biologist with the agency's U.S. Pacific Basin Agricultural Research Center in Hilo, Hawaii.

Hollingsworth conducted caffeine studies in collaboration with research entomologist John W. Armstrong at the Hilo Center and Earl Campbell of the U.S. Fish and Wildlife Service, Honolulu.

The idea of using caffeine to quell pests isn't new. But Hollingsworth and colleagues apparently are the first to report its prowess in clobbering pesky molluscs such as Hawaii's orchid snail, Zonitoides arboreus. The tiny snail is a common and costly pest to growers of Hawaii's colorful and exotic tropical orchids. These orchid farms are world renowned for the quality, quantity and variety of the flowers that they produce.

In preliminary experiments at his research greenhouse in Hilo, Hollingsworth applied a 2 percent solution of caffeine in water as a spray to the coconut husk-chips material in which orchids are grown. This growth medium, called coir was infested with the tiny snails. The scientists found that the caffeine spray killed up to 95 percent of the snails.

In another experiment, the researchers showed that growth medium treated with the 2 percent caffeine solution had only 5 snails, when checked 30 days after the spray was applied. That's in contrast to the 35 snails that they found in growth medium that had been treated with a standard dose of metaldehyde, a common molluscicide.
Future investigations will provide further details about the ability of caffeine sprays to protect floral crops from marauding molluscs. Caffeine, a naturally occurring compound in coffee and chocolate, for example, is ranked "generally recognized as safe" by the Federal government.

ARS is the U.S. Department of Agriculture's chief research agency. (ARS News Service, Agricultural Research Service, USDA Marcia Wood, (301) 504-1662, MarciaWood@ars.usda.gov, June 26, 2002)

10.0 SUMMARY OF THE 2002 FARM BILL

Below are some of the provisions of the new 2002 Farm Bill:
Conservation Security Program: This is a new program that rewards stewardship of working land by farmers and ranchers of all types. It recognizes the practices used and the environmental benefits derived from these practices rather than the crops or livestock being produced. It provides financial incentives for conservation on working lands and needed support for family farms and ranches. Beginning Farmer and Rancher Provisions: This establishes the Beginning Farmer and Rancher Development Program but funding will be discretionary (annual appropriation). It also reforms the credit title to improve programs for beginning farmers and ranchers, and includes cost-share assistance to help farmers and ranchers participate in conservation programs.

Mandatory Country of Origin Labeling: The program calls for the labeling of meats, fruits, vegetables, peanuts and farm raised fish by its country to allow U.S. consumers to know and choose the origin of their food. Labeling will be voluntary this year and in 2003, but then it will be mandatory. USDA Equity and Justice Reforms: The farm bill authorizes the creation of a USDA Assistant Secretary for Civil Rights and puts in place important reforms for County Committee election procedures. The USDA will also be required to better track and evaluate participation by limited resource and socially disadvantaged farmers in USDA programs.

National Organic Certification Cost Share Program: The program provides assistance to small farmers who choose to implement
environmentally sound practices in compliance with the USDA’s National Organic Program. The bill allows a maximum cost share of 75%. The maximum payment made to a producer or handler under this provision is $500. Funding for this program is $5 million over the life of the farm bill. This is in addition to $1 million already made available through the crop insurance bill for the Northeastern states.

Community Food Projects: Community Food Projects will receive $5 million in mandatory funding over year for the next six years of the Farm Bill. The farm bill improves the program by allowing for planning grants for comprehensive, multi-stakeholder solutions including support for a national clearinghouse on “innovative Programs to Address Common Community Problems.”

Purchase of Locally Produced Foods: Institutions participating in the National Satchel Lunch and Breakfast programs are encouraged to purchase local foods where practicable, and a seed grant fund was authorized for 200 institutions. This funding will need to be appropriated by a separate appropriations bill. Farmers’ Market Nutrition Program (FMNP): The WIC (Woman, Infant, and Children) FMNP will receive an additional $15 million in the current fiscal year. Along with the $10 million released in January, this funding brings the total to $25 million, allowing current states and tribes to expand their programs. The Senior FMNP is authorized for the next full six years of the bill, with mandatory funding of $15 million per year. Farmers Market Promotion Program: The FMPP is established to make grants eligible to establish, expand and promote farmers’ markets but the funding is discretionary (requires an annual appropriation).

Anne Carter, UMass Veg. Crops Management & Food Systems
(Ruth Hazzard, editor, Vegetable IPM Newsletter JUNE 27, 2002, VOLUME 13, NUMBER 9)

11.0 Late and Early blight (Vermont)
(adapted from MA, NY and WI extension)
Late blight is much more destructive to potatoes and tomatoes than early blight. Early blight can be expected to occur every year on tomato, and occasionally on potato. It generally starts on older leaves and is easily identified by characteristic 'rings' inside the areas of dead tissue. Most conventional fungicide programs do a reasonably good job in managing early blight. On the other hand, late blight has occurred only occasionally in Vermont over the past several years, and to control it requires careful selection of fungicides and rigorous scouting to catch it early. Late blight moves in very quickly and can be very destructive. Rainy weather and temperatures between 65 and 70 degrees are ideal for late blight epidemics. The late blight fungus is inactive above 85 degrees.

This year, late blight has been confirmed in states to our south and west. While sanitation is key to preventing the disease from overwintering on crop residues on your farm, the spores can travel a long way on wind, and many farms can become infected quickly. We saw this last year on tomato crops across southern Vermont. Protective fungicide sprays are the only way to prevent this disease from spreading once it arrives. Scout your fields frequently for late blight, particularly looking in low areas where water has collected or humidity is high. Wheel tracks are a good source of high humidity in the field as are areas along the tree line. Look for large black spots on the leaf the size of a silver dollar. Young lesions appear as small necrotic (dead) spots that are collapsed and surrounded by light green tissue. These lesions are difficult to find if they are buried in the canopy. Under moist conditions a ring of white mildew appears at the margins of necrotic tissue, usually on the undersides of the leaf lesions. Lesions are also common on stems and leaf petioles where they girdle and blacken succulent tissues.

For late blight on potatoes, the fungicides Curzate, Acrobat MZ and Previcur Flex can be used. These materials are not registered for tomato. Ridomil was the material of choice for late blight but many strains are now resistant to the fungicide. For late blight on tomato fungicide options are Ridomil Gold MZ, Ridomil/Bravo, Bravo and Manzate. Ridomil Gold MZ is formulated with Manzate. The rates of Ridomil Gold MZ and Ridomil/Bravo deliver about the same
amounts of Bravo and Manzate that you would have if you were to use these products alone.

Organic growers can use copper fungicides to get some protection of plant tissue from both early and late blight infection. (VERMONT VEGETABLE AND BERRY NEWS, July 15, 2002 Compiled by Vern Grubinger, University of Vermont Extension)

12.0 Root dip with Quadris on Strawberries in N. Carolina?

Editor's note: There is currently no registration for using Quadris as a root dip on strawberries.

Special Dip for Quadris? Just before the Wilson Preplant Meeting (Aug. 20), Dr. Louws shared with me information that NC will be applying for a FIFRA Section 2(ee) as it relates to the use of Quadris fungicide as a pre-plant dip to the strawberry roots and crowns (similar to CA). We should have information on this possible application in early September. (Strawberry Plasticulture August 27, 2002, Volume 3, Number 52, E. Barclay Poling, Extension Strawberry Specialist)

12.1. Onion thrips

WATCH FOR ONION THRIPS
Hot weather brings not only tiring and sweaty fieldwork, but also onion thrips, which can cause considerable damage to onions and other alliums and to cabbage. Their populations can increase very rapidly during hot weather and may go unnoticed until serious losses occur. Thrips are night feeders and hide during the day. Scout fields: by looking in the dark areas between leaves. It is important to control these insects early while populations are low.

Identification: When they are immature they are from 0.5 to 1.2 mm, with an elongated, elliptical and slender body that is white to pale yellow. Their eyes have darker coloration and are easy to see. Immature thrips have short antennas. The difference between immatures and adults is that immatures do not have wings, so they
cannot fly. The majority of immature thrips are found between the young leaf blades at the top of the plant. To observe them you need to separate the leaves from the neck. The pupae are pale yellow to brown and appear as an intermediate form between the immature and the adult. They have short antennae and the wing buds are visible but short and not functional. At this stage thrips do not feed. When they are adults they are pale yellow to dark brown and can be up to 2 mm. Adults have fully developed wings that are very different from other insects. They have a single longitudinal vein in which there are several hairs connected perpendicular to the vein. The wing appears as fringe with hairs. When at rest, the wings are folded along the back of the insect. Adults are more mobile than immatures and pupae because they can fly. They are attracted to yellow and white colors. They often will fly to one's clothes or land on exposed skin. Seedlings: Direct seeding of onions prolongs the growing season in the field and the susceptibility to thrips infestation.

If the crop is going to be transplanted, the seedbeds should be distant from the old plantings and new plots to be planted. It is very important that onion seedlings are clean of thrips before transplanting to the field. Remove unharvested plant parts volunteer onion plants are an important source of infestation for thrips. Thrips prefer to feed on the young plant tissue on the newest emerged leaves. When the leaf grows, the previous damage produced by the thrips enlarges, leaving empty spaces in the surface of the leaf. The appearance of the damage is silvery patches or streaks on the leaves that shine in the sun. When damage is severe, these small patches can occupy most of the surface of the leaf and the plant cannot adequately photosynthesize. The plant loses more water than normal through the damaged tissues and plant pathogens penetrate the injured plant easily. John Howell, Stephanie DeGray & Cornell University (Ruth Hazzard, ed., Univ. Mass. Vegetable IPM Newsletter JULY 3, 2002, VOLUME 13, NUMBER 10)

13.0 Spider mite control on vine crops (Ohio)

Spider mite control on vine crops (C. Welty)
During hot dry weather like Ohio is now having, we usually see outbreaks of the two-spotted spider mite in vine crops. Pumpkins can tolerate moderate levels of mites, but watermelons are particularly sensitive to injury from mite feeding. Miticide options include the older products Kelthane (dicofol), Metasystox-R (oxydemeton-methyl), malathion, and insecticidal soap, and the newer products Agri-Mek (abamectin), Danitol (fenpropathrin) and Capture (bifenthrin). Dimethoate is an option for melons but is not allowed on squash or cucumbers; it has been the preferred product for mite control on soybeans. Vydate (oxamyl) is registered for use on all vine crops for aphid control; although its label does not list mites as a target pest, Vydate is known to provide mite control on other crops such as eggplant and apples.

A search of published reports on mite control in watermelon during the past few years resulted in one report. In a trial conducted in Maryland in 1998, Kelthane gave the best control followed by Danitol, and Agri-Mek gave poor control. The trial also compared these products in 10 versus 25 gallons of water per acre, and control was consistently better with 25 than with 10 gal/A. (Robert Precheur, ed., Ohio State University Extension Vegetable Crops VegNet Vol. 9, No. 16. July 18, 2002).

14.0 Avaunt update (Ohio)

Several more crops have been added to the Avaunt label: eggplant, Brussels sprouts, Chinese broccoli, Chinese cabbage (napa), Chinese mustard cabbage, and kohlrabi. Avaunt is a DuPont product that contains indoxacarb. It controls caterpillars such as cabbage looper, imported cabbageworm, diamondback moth, and tomato fruitworm. Avaunt has been available since December 2000 for use on cole crops, lettuce, tomato, peppers, and sweet corn. (Robert Precheur, ed., Ohio State University Extension Vegetable Crops VegNet Vol. 9, No. 16. July 18, 2002)

15.0 Messenger Update (Mass)
MESSENGER: A NEW PRODUCT FOR MANAGING PESTS AND IMPROVING YIELD IN VEGETABLES AND OTHER CROPS Messenger® (EPA Reg. No. 69834-2) is a biochemical pesticide from Eden Bioscience for plant disease management, insect suppression, and plant growth enhancement. It is now labeled throughout the United States. Messenger can be used on a broad spectrum of crops, including vegetables, grown in field, greenhouse, shadehouse, and nursery production. It is labeled for use on the following vegetables: asparagus, artichoke, sweet corn, cucurbits, tomato, pepper, eggplant, leafy and cole crops, beans and other legumes, beets and other root crops, potato, onion, garlic, and scallion. Messenger is virtually non-toxic and degrades rapidly leaving no detectable residue. This product is promoted as a foundation for IPM programs because of its ability to increase plant health without adversely affecting beneficial organisms.

Messenger contains a new active ingredient, HarpinEa. It is based on naturally occurring proteins called “harpins” that are produced by bacteria and other microbes. More specifically, HarpinEa is chemically identical to the harpin produced naturally by Erwinia amylovora, the plant pathogenic bacterium that causes fire blight. Zhongmin Wei discovered the harpin protein while working in the laboratory of Steven Beer in the Department of Plant Pathology at Cornell University. HarpinEa does not have any direct pesticidal effect on insects or pathogens. It works to increase the ability of plants to resist disease. Diseases listed on the label include Bacterial Spot and Phytophthora Root Rot of tomato and pepper; Bacterial speck, Root-Knot Nematode, and Fusarium Wilt of tomato; and Cucumber Mosaic Virus affecting cucurbits and eggplant. Messenger reportedly reduces damage caused by some insects through making plant material more difficult for insects to digest.

Messenger has shown promising results in some research trials, especially against bacterial diseases in tomato and pepper and against Powdery Mildew in numerous crops. While evaluating efficacy of Messenger for various diseases and insect pests, it was noted that this product also enhances plant growth. Both nutrient uptake and photosynthesis are stimulated. This has resulted in earlier yield and increased yield. Research is underway in the northeast to determine whether these growth effects that were
observed in Florida and California also will occur under our climatic conditions. Thus only trial use can be recommended in the northeast until this work is done. It is worth trying in situations.

Growers planning to try Messenger need to be aware that the current formulation cannot be used with chlorinated water. Either use well water or other non-chlorinated water, or obtain WTA, which inactivates chlorine, from Eden Bioscience. Also, note that the product does not keep after the package is opened; therefore it is marketed in single-use packages. Current guidelines are to apply Messenger as a foliar spray at approximately 14-day intervals beginning at least 5 days before transplanting. The label specifies that it can be tank mixed with other pesticides, depending on restrictions listed on other products. The label includes guidelines for applying Messenger as a drench for greenhouses set-up to apply pesticides this way (section 12); however, material applied to foliage will have the greatest impact. A maximum annual use rate is not specified on the Messenger labeling. Adapted by R. Wick & R. Hazzard from an article by Margaret McGrath, Long Island Hort. Resrch & Ext. Ctr, Cornell Univ. (Ruth Hazzard, ed., Univ. Mass. Vegetable IPM Newsletter JULY 3, 2002, VOLUME 13, NUMBER 10)

16.0 Does Spraying for aphids control viral infections? (Mass)

DOES SPRAYING FOR APHIDS CONTROL VIRUS & WHEN SHOULD I SPRAY? Last summer John Howell reported this story: “I was recently talking with a vegetable grower who mentioned that he thought it was about time to start spraying for aphids. I asked if they were starting to build up in the field. He didn’t know, but said he wanted to use preventive treatments to control aphids so they would not bring a virus disease into his crop. We checked plants randomly throughout the field and found no aphids. The grower decided not to spray at that time. This saved him a few hours of time, the cost of material and equipment operating costs. It only took us about ten minutes to check the field.”

This is not an uncommon situation. At this point in the season, aphids are showing up in many crops, and growers are concerned about whether and when to spray. Many growers feel they must
have a rigorous spraying program for aphids to protect their crops from virus diseases. All too often this practice is not effective in preventing the occurrence of virus diseases, but it is expensive and time consuming and can lead to further outbreaks of aphids. Below is a brief review some of the basics of how viruses are spread. Virus diseases require a living host, and when the host plant dies, any virus within the host plant cannot survive. (An exception is tomato/tobacco mosaic, which can survive in dead host tissue.) For the most part, viruses survive the winter in certain perennial weeds. During the growing season, viruses can be transmitted from perennials to a susceptible vegetable crop.

Most vegetable virus diseases that are important in New England are spread by insects (see Table 2). Cucumber beetles, thrips, leafhoppers, and nematodes can spread certain viruses, but aphids are the most important vectors (carriers). Viruses can be classified as persistent and nonpersistent (see Table 2). This is related to the manner in which they are spread by insects and is important in choosing an appropriate management strategy. An insect must feed for a minimum of ten minutes to an hour to pick up a persistent virus from an infected host. The virus must then undergo a dormant period of at least 12 hours within the insect before it can be transmitted to another plant. Aphids will remain infective (able to vector a virus) for at least a week and maybe throughout their life. A good insect management program including pesticides can be very helpful in dealing with persistent virus diseases.

Aphids pick up nonpersistent viruses by merely probing (exploring) an infected leaf. This happens rapidly—within seconds or minutes. A dormant period is not required and the aphid can immediately transmit the virus by probing another plant. Aphids remain infective with nonpersistent viruses for a short time (minutes). Nonpersistent viruses are very difficult to manage. We have no pesticide that kills viruses and, as we have seen, insecticides may actually make matters worse. Eradication of perennial weeds around fields can reduce the source of the virus. The green peach aphid is not the only aphid that transmits viruses, but it is important because it is a universal vector. Prunus species (peaches, cherries etc) are attractive to green peach aphids. Removal of wild
prunus such as wild cherry trees from around fields can make the area less attractive to green peach aphids.

Systemic materials are generally the most effective insecticides available for aphid control. Systemic insecticides are taken into the plant and become present in the plant juices. Aphids feed by sucking juices from the plant, and when they do so they also ingest some of the insecticide. However, when probing a leaf an aphid is not feeding and does not ingest plant juices or insecticide. In fact, the presence of an insecticide may actually stimulate probing and cause aphids to move from plant to plant in an effort to fine a suitable feeding site. This can increase the spread of nonpersistent viruses.

Reflective mulch such as aluminum foil on paper has been used successfully to repel aphids and can be effective in reducing virus problems. However this material is expensive and tears easily when laying. Some of the light colored plastic mulches may be worth a try. Row covers such as Remay can keep aphids off a crop, but they are generally used during the cool days of spring whereas aphids are most active during warm weather.

Direct damage from aphids: Besides spreading virus diseases, aphids in high numbers can cause economic damage by their feeding activities. Leaf curling and yellowing, or deposits of honeydew on leaves or fruit or husks can affect crop quality or yield. For this reason it is important to manage aphids even if virus is not a concern. However, beneficial insects such as ladybeetles, spined soldier bugs, insidius flower bugs, spiders, lacewings, and parasitic wasps often keep numbers low enough to prevent direct damage. These insects move around a lot, and build up wherever they find aphids to feed on. Early sprays targeting aphids may actually result in further aphid outbreaks, because the natural enemies that keep them in check are killed.

Scouting across the field gives you an estimate of current numbers. If aphids are present, check back in a few days to see if the numbers are increasing or decreasing. Note which natural enemies are present. It is not unusual for numbers to decrease as natural enemies build up. Check the undersides of leaves, including lower
and mid level leaves. The following thresholds can be used to determine if insecticides are needed (sampling routine in parenthesis): Pumpkin and winter squash: 20% of leaves have more than 10 aphids (based on 50 leaves). Pepper: 10 per leaf (based on 4 leaves per plant, 25 plants). Tomato: 6 per leaf (based on 2 leaves per plant, 25 plants). Potato: 4 to 10 per leaf (based on 25-50 compound leaves; higher threshold near harvest). Sweet corn: 50% of plants with >50 aphids at emerging tassel (based on 100 plants). When spraying for aphids, whenever possible select a systemic insecticide or one that will conserve natural enemies.

17.0 Crop yields will drop if erosion continues

Crop yields will drop if erosion continues, soil scientist says

The scars of soil erosion continue to show throughout southern Minnesota. And if erosion continues at this pace, highly productive soils will no longer be able to sustain high yields, says a University of Minnesota soil scientist.

"This is the fourth year in a row of severe erosion," says Gyles Randall, U of M soil scientist at the Southern Research and Outreach Center at Waseca. "The agricultural community, especially corn and soybean farmers, should be very concerned when severe losses of highly productive soils and impassable gullies continue to develop."

"Now is the time to start making plans for less fall tillage," Randall says. "The best tillage system we've observed for keeping erosion in check is soybeans no-tilled into standing corn stalks, especially when combined with strategically placed, sufficiently wide grass waterways. Farmers are encouraged to observe these soybean fields and start asking questions about this easy and productive soybean cropping system."

Most farmers do some major tillage after corn. And with the corn-soybean rotation so prevalent, there's very little protection against
erosion. Tremendous gullies develop, and a complacent attitude of "it happens" seems to exist, Randall says.

"No-till following corn works very well," Randall says. "We have the machinery to do it, we can get good stands and excellent weed control and yields and it's inexpensive. Some farmers are doing it very successfully, and can't understand why their neighbors aren't."

Randall may be reached at (507) 835-3620 or randa012@umn.edu. (Univ. Minesotta, Sustainable Agriculture Newsletter, College of Agricultural, Food, and Environmental Sciences__Volume 10, Issue 7___July 2002)

18.0 Fruit coating as biofungicide

Apples and citrus are about to get a uniform new coat. But it's not to keep the fruit warm on cold orchard nights. Instead, these coatings act as biofungicides that keep fruit fresh longer during storage.

Agricultural Research Service scientists have been working to improve earlier biofungicides aimed at controlling decay of fruits and vegetables after harvest. Such fungal decay can destroy more than 25 percent of the world's harvested fruit.

Biological products, such as friendly yeasts, are used for environmentally safe pest control and to reduce dependence on synthetic chemicals. They work by consuming nutrients on fruit and vegetable skins that otherwise would allow rot-causing fungi to grow.

Charles L. Wilson, a plant pathologist with the ARS Appalachian Fruit Research Station, Kearneysville, W.Va., and Ahmed El Ghaouth, a postharvest plant pathologist employed by Micro Flo Co. of Memphis, Tenn., conducted research leading to two patents issued this year.

One of the two new patents discloses how chitosan, a natural fungicide, can be compatibly combined with an antagonistic yeast named Candida saitoana by adding a softener. Antagonistic yeast organisms are normally found on fruit and vegetable skins, but are
benign to people. The other patent approved this year discloses a mixture of C. saitoana with lysozyme, an antifungal enzyme.

Development of postharvest biological products based on technology described in the patents is being furthered by Micro Flo, a subsidiary of the international chemical company BASF, through a cooperative research and development agreement. Micro Flo is pursuing the lysozyme and C. saitoana mixture to create a product named Biocure.

The annual worldwide market for postharvest treatments is currently more than $18 million for citrus and more than $8 million for apples, according to El Ghaouth.

ARS is the U.S. Department of Agriculture's chief scientific research agency. (Source: Fresh Fruit Gets a New Protective Coat, ARS News Service, Agricultural Research Service, USDA Rosalie Marion Bliss, (301) 504-4318, rbliss@ars.usda.gov August 21, 2002)

19.0 Biocontrol corner: Vaccine for nematode control?

Japanese researchers are using a form of vaccination to control the spread of a disease that is destroying the country's pine forests. Injecting healthy trees with a non-virulent strain of the nematode parasite responsible induces resistance to later attack with the wild strain, the scientists report.

Pine wilt disease was introduced into Japan from North America at the beginning of the last century. Over the next decades, it spread throughout the Japanese archipelago with the exception of the most northerly islands.

More recently, it was accidentally exported to several neighboring states, including South Korea in 1988, and to Taiwan and China. In 1999, it also established a foothold in Europe, and damaged Portuguese pine forests.
At the height of the Japanese epidemic in 1979, the disease destroyed an estimated 2.4 million cubic metres of pine timber. Through the 1990s, even with a reduced population of mature trees, the infection destroyed nearly 1 million cubic metres each year.

Apart from being economically disastrous for the logging industry, the disease causes both ecological and aesthetic damage - by killing the salt resistant coastal pine forests that prevent coastal erosion, and attacking trees in parks and gardens.

The pine wilt nematode (Buraphelenchus xylophilus) is transmitted by the Japanese pine sawyer beetle, Monochamus alternatus. It is carried in the beetle's tracheae and is transferred on to the tree when young adult beetles land on its bark to feed.

The nematode enters the resin channels and multiplies quickly as it spreads through the tree, feeding on its sapwood and phloem vessels. Within a few weeks of infection in the early summer the trees begin to wilt and eventually die.

Nematodes living within the dead trees seek out beetle larva and overwinter within the immature insect's respiratory vessels before hitching a ride to their next meal when the new adult emerges the following year.

As its name suggests, the beetle vector is a native species, formerly found in relatively small numbers across its range. But the arrival of the alien parasite has hugely increased the numbers of dead trees on which it lays its eggs, triggering a population increase that helps to fuel the disease epidemic.

Because pesticide sprays can harm the environment, Japanese forestry managers have tried to control the disease by burning dead trees to destroy the beetle vector before it can emerge, but the fires sometimes rage out of control creating even more damage.

Hajime Kosaka, a researcher at the Japanese Forestry and Forest Products Research Institute, Ibarake, described a new approach to the control of pine wilt disease.
Kosaka and his colleagues found that different strains of the nematode vary in their effect on the host tree. By repeatedly infecting pine seedlings in the laboratory, the researchers isolated a benign strain, which can be cultured artificially on barley to produce large numbers of nematodes.

In controlled trials conducted at the beginning of the 1990s, the scientists inoculated a dose of about 30,000 of the non-virulent nematodes into the bark of pine trees.

The benign nematodes protected against the damage caused by subsequent exposure to a pathogenic nematode strain, the researchers found. Compared with only 10% of control trees, all treated trees survived to the following growing season.

Kosaka described the results of the latest trial in which the scientists treated trees in an area of commercial forest with epidemic disease. Over three years, annual treatment of a proportion of the trees increased the survival of trees throughout the area, but did not eliminate further transmission.

"The level of induced resistance is not sufficient to prevent the spread of disease in the field situation but it does slow it down," Kosaka told BioMedNet News.

Drawing a parallel with vaccinating against influenza, Kosaka said that while it is not possible to inoculate everybody, scientists may be able to save vulnerable groups or particularly valuable trees. "It may also be possible to ring vaccinate around a new outbreak to stop the disease spreading," he said. (Source: by John Bonner From the International Ecology Congress, IE 2002 - Day 1 - Tuesday 13 August 2002, Report: Vaccine design branches out, Investigator: Hajime Kosaka, report provided courtesy of Professor J. Cummins, via e-mail, Aug. 19, 2002).

20.0 Organics Corner: Labeling according to Fed Standards
Information on Labeling Packaged Products under National Organic Standards Available

21.0 E-coli on Romaine lettuce (Washington State)

FDA Issues Nationwide Alert to Consumers about Spokane Produce Brand Romaine Lettuce Due to Possible Health Risk

The Food and Drug Administration (FDA) is warning consumers not to consume Spokane Produce brand romaine lettuce because this product has been associated with an outbreak of "E. coli" O157:H7 in a cheerleading camp in Washington State in mid July. FDA urges consumers to throw out this product. "E. coli" O157:H7 causes a diarrhea illness often with bloody stools. Although most healthy adults can recover completely within a week, some people can develop a form of kidney failure called Hemolytic Uremic Syndrome (HUS). HUS is most likely to occur in young children and the elderly. The condition can lead to serious kidney damage and even death. http://www.cfsan.fda.gov/~lrd/fplettuc.html (USDA National Food Safety Educator's Network (EdNet) August 2002)

22.0 Guthion Phase-out

BAYER PHASES OUT GUTHION ON 30 CROPS
On August 2, 2002 Bayer Crop Science voluntarily agreed to phase-out the labeled uses of the insecticide Guthion (Azinphosmethyl) on 30 crops. The cancellation of the product on the fruits will be effective Dec. 31, 2005, and is part of the EPA's implementation of the Food Quality Protection Act. In New England, the greatest impact may be on fruit and nursery stock growers, but vegetable growers may be affected as well. The crops for which use will be stopped or phased out, growers must now turn to new chemistries that target pests more specifically, according to Dr. Wayne Carlson of Bayer Crop Science. "For the crops for which there is not an alternative at this time, we'll work with the grower groups and EPA over the next several years to determine future use in these crops," said Carlson.

Details of the EPA agreement include: Time-limited registration: (cancelled 12/31/05 unless submitted data indicate registration should be continued) almonds, apples, blueberries, brussel sprouts, cherries, nursery stock, parsley, pears, pistachios and walnuts.

Phased-Out: (cancelled as of 8/31/05 and cannot be used after 12/31/05) cotton, cranberries, nectarines, peaches, potatoes, southern pine seed orchards and caneberries.

Cancelled: alfalfa, beans, broccoli, cabbage, cauliflower, citrus, celery, clover, cucumbers, eggplant, filberts, grapes, melons, onions, pecans, peppers, plums, quince, spinach, strawberries and tomatoes. No more sales of product labeled for these use can be made after September 1, 2002 (existing stocks can be used). -Fruit Growers News and Vegetable Growers News, 8/02 (Ruth Hazzard, ed., Vegetable IPM Newsletter, University Of Massachusetts Extension Vegetable Program, August 29, 2002, VOLUME 13, NUMBER 18)

23.0 Updated contact info for HOFA (HI Organic Growers Assoc.)

HAWAII ORGANIC FARMERS ASSOCIATION HOFA
P.O. Box 6863
Hilo, HI 96720
(808) 969-7789 phone
(877) 674-4632 (toll free)
24.0 IPM Symposium/Workshop April 2003

Building Alliances for the Future of IPM

"Building Alliances for the Future of IPM," the Fourth National Integrated Pest Management Symposium and Workshop, will be April 8 to 10, 2003, in Indianapolis, IN. This event will launch the National Roadmap for IPM, a vision for IPM in the U.S. for the next 10 years. All disciplines relating to IPM are encouraged to attend, including weed science, plant pathology, vertebrate management, entomology, hematology, horticulture, agronomy, communications, economics, and sociology.

http://nautilus.outreach.uiuc.edu/conted/conference.asp?ID=244

25.0 Workshop on Integrated Water Resource Management

For more information see our website at: Web Site:
http://www.usbr.gov/international/trn_integrated.htm

This workshop will review and analyze recent developments in integrated water resource management (IWRM) and tools. The speakers will be experts from the Bureau of Reclamation and specialists from other water resource management entities who will provide a comprehensive overview of IWRM theory and techniques with discussion on policies and practical management issues - - from river basin level to individual water resource projects. Discussion will focus on assessing and dealing with competing demands imposed on a limited water resource and, at the project level, means
to better promote their efficient operation, maintenance, and management for multiple purposes including irrigated agriculture, flood control, hydropower, water supply and environmental purposes. Specific sessions in the Workshop will be devoted to a wide array of topics including IWRM theory, data collection, water quality, water conservation, drought management, adaptive management, decision support systems, and conflict management. The Workshop will officially conclude on Friday at 2:00 p.m., however, a three-day study tour (April 12, 13, and 14) may be added to the Workshop for an additional fee. The tour would consist of field visits to interesting water-related locations in Colorado. Official Contact: Ms. Leanna Principe, E-mail: lprincipe@do.usbr.gov, International Affairs, D-1520, U.S. Bureau of Reclamation, P.O. Box 25007, Denver, Colorado, 80225, U.S.A. telephone: (303) 445-2127, Fax: (303) 445-6322,

26.0 EPA Agriculture Compliance Center Web site

For news items selected by the Center as having direct importance to environmental compliance efforts, see http://www.epa.gov/agriculture/news/index.html. For general information about the Agriculture Compliance Center, see http://www.epa.gov/agriculture.

27.0 Grants for New Farmers in New England- a good idea?

Editor's note: Below is a Press Release concerning an innovative program that is aimed to help beginning farmers in the New England States. Another good reason to encourage farm groups to organize and call for these kind of funding opportunities in Hawaii.

GROWING NEW FARMERS PROJECT AWARDS $200,000 TO IMPROVE SERVICES FOR NEW FARMERS

The Growing New Farmers (GNF) Project has awarded $200,000 to 14 organizations to develop new programs, services, and products
to make it easier for people to get started and succeed in farming. The awards are an innovative way of sharing the $1.7m USDA granted to the New England Small Farm Institute (MA) to create a Northeast-wide support network to serve new farmers.

Through its "Competitive Initiative," the GNF Project solicited proposals that generated innovative new or improved services for beginning farmers in four areas: access to knowledge; access to land; access to markets; and access to capital. Nearly 40 members of the GNF Service Provider Consortium, including educational institutions, community-based organizations and state agencies in the 12 Northeast states, responded.

Successful proposals include: A peer-monitored revolving loan fund for new immigrant farmers in NYC (Council on the Environment of NYC/ Greenmarket); a guidebook detailing alternative land tenure models (Intervale Foundation); a pilot project to create a collective Community-Supported Agriculture (CSA) marketing structure (NOFA-VT); and improved tools to evaluate feasibility of new farm enterprises (Cornell Cooperative Extension, Tompkins County). For a complete listing of all awarded projects, and for more information about GNF, visit www.northeastnewfarmer.org.

GNF is the only regional initiative focused on new farmers in the U.S. Its activities include research, policy development, professional training, an interactive website with directory, resources, and on-line learning, and program and resource development. (Gaby Immerman, Project Assistant, Growing New Farmers Project/ , New England Small Farm Institute, e-mail, Aug. 23, 2002).

28.0 Promoting vibrant economies in Rural America

NEW REPORT OUT ON POSSIBILITIES FOR VIBRANT COMMUNITIES, ECONOMIES IN RURAL AMERICA

"Creating Vibrant Communities & Economies in Rural America" is a new report released by the Southern Rural Development Center. It
paints a portrait of a rural economy that has undergone tremendous change in the past three to four decades. Prepared by LIONEL "BO" BEAULIEU, the report points out that retail trade and services have replaced agriculture and manufacturing as key economic drivers. It notes that earning gaps between metro and non-metro workers have widened in the past decade.

The report offers a number of strategies for strengthening rural America. These include:

* expanding the quality of human resources;
* building an entrepreneurial spirit;
* enhancing the digital capacity of rural areas; and
* promoting broad-based citizen involvement in civic life.

A PDF copy of the report may be downloaded from http://srdc.msstate.edu/publications/vibrant_communities.pdf. For additional information, contact SALLY MAGGARD, CSREES (202-720-0741 or smaggard@reesda.gov).

29.0 Sustainable Ag Conference in North Carolina, 10-02

-- SARE EXPECTS 600 AT NORTH CAROLINA CONFERENCE IN OCTOBER

Registration is now open for "On the Road to Sustainable Agriculture," the Sustainable Agriculture Research and Education (SARE) program's national conference in and around Raleigh, NC, October 23-26, 2002. About 600 expected participants will tour North Carolina farms by bus during the daytime and listen to speakers in the evenings at the Sheraton Imperial Hotel and Convention Center. On October 26, the first Patrick Madden Farmer of the Year will accept a $1,000 award.

Tour preference forms will be mailed with registration confirmations. There are more than 40 tour stop choices. For more information and to register, visit http://continuingeducation.ncsu.edu/SARE02.html.
30.0 Upcoming events- Hawaii

*October 14-16: Short course: Pesticide Risk Reduction Education, Lihue, Kauai; fee: $100; registration deadline: September 20; registration form at http://pestworld.stjohn.hawaii.edu/studypackets/ordrfrm2.html (contact: Charles Nagamine, charlie@hpirs.stjohn.hawaii.edu, phone 808-956-6007, fax 808-956-9675)

*October 24: First Annual Agricultural Conference, all day, Sheraton Waikiki (contact: Alan Tin, tin@verizon.net, 808-732-2294).

*October 25-26: Hawaii Farm Bureau Federation annual meeting and farm tour, Sheraton Waikiki (contact: HFBF, hfbf@hfbf.org, 808-848-2074)

31.0 Flower and Garden Fest Oct. '02, Mississippi

The 24th Annual Fall Flower & Garden Fest will be Friday and Saturday, October 18 & 19, at the Truck Crops Experiment Station in Crystal Springs.

This is the largest home gardening / horticulture event in the southeastern United States, with average attendance of 4,000 people. The event is free and open to the public. Hours are 9 am to 2 pm both days. The Experiment Station is 25 miles south of Jackson, just south of Interstate 55 exit 68 on US 51. For information and complete details, see the web page at
32.0 Upcoming events- Out-of-state

October 12-15, Principles of Community Organizing Training Session will be held in Twin Falls, ID; contact Western Organization of Resource Councils, (406) 252-9672; billings@worc.org; www.worc.org.

October 23-25, "Regional Perspectives on Water Information Systems: Case Studies," Fifth Water Information Summit, will be held in Ft. Lauderdale, FL; contact Terry Dodge, Florida Center for Environmental Studies, Florida Atlantic University, (561) 691-8557; wis5@ces.fau.edu; www.waterweb.org/wis/wis5. October 23-26, "On the Road to Sustainable Agriculture," a national conference with on-site tours, hosted by Southern Region SARE program, will be held in Raleigh-Durham, NC; contact Southern SARE Office, (770) 412-4786; ppatton@gaes.griffin.peachnet.edu; www.griffin.peachnet.edu/sare.

October 28-30, National Poultry Waste Management Symposium will be held in Birmingham, AL; contact Richard Reynnells, USDA/CSREES/PAS, 800 9th St. SW, Rm. 3702 Waterfront Center, Washington, DC 20250; (202) 401-5352; rreynnells@reeusda.gov; http://animalscience.ucdavis.edu/Avian/nwmsprog.pdf.

October 31-November 2, "Thinking Outside the Box Sustainably," 10th National Small Farm Trade Show and Conference, will be held in Columbia, MO; contact Small Farm Today magazine, 1-800-633-2535; www.smallfarmtoday.com.

November 1-2, "Taking Your Product from Field to Consumer," 2nd Annual Wisconsin Specialty Food Marketing Conference, will be held in Algoma, WI; contact Mary Pat Carlson, Farm Market Kitchen and Kewaunee County AgTourism Association, (920) 487-9750; mcarlson@itol.com.
November 7-9, Conference on "EcoLabels and the Greening of the Food Market" will be held in Boston, MA; contact Willie Lockeretz, Friedman School of Nutrition Science and Policy, Tufts University, willie.lockeretz@tufts.edu; http://nutrition.tufts.edu/conted/ecolabels.

November 8-9, "Sustainable Communities in an Era of Globalization," National Catholic Rural Life Conference 79th Anniversary and Annual Gathering, will be held in Dearborn, MI; contact NCRLC, 4625 Beaver Ave., Des Moines, IA 50310; (515) 270-2634; ncrlc@aol.com; www.ncrlc.com.

November 9-11, "Great Markets, Great Cities," 5th International Public Market Conference organized by Project for Public Spaces, will be held in New York City; contact Harriet Festing, Project for Public Spaces, (212) 620-5660; hfesting@pps.org; http://www.pps.org/PublicMarkets/PMC_Main.

November 10-14, Annual Meetings of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America will be held in Indianapolis, IN; contact ASA-CSSA-SSSA Headquarters, (608) 273-8080; www.asa-cssa-sssa.org/anmeet.

November 14-15, 2nd International Agricultural Trade & Policy Conference will be held in Gainesville, FL; for program information, contact John VanSickle, Conference Chair, International Agricultural Trade and Policy Center, (352) 392-1881 ext. 221; sickle@ufl.edu; for registration information, contact Sharon Borneman, Coordinator, (352) 392-5930; dwpowers@mail.ifas.ufl.edu; http://conference.ifas.ufl.edu/atpc/index.html.

November 14-15, Farmers Cooperatives Conference will be held in St. Louis, MO; contact Bob Cropp, Director, University of Wisconsin Center for Cooperatives, (608) 262-3981; cropp@aae.wisc.edu.

November 30 is the submission deadline for presentations to "For a Sustainable and Ecological Agriculture in Harmony with Nature and
Society," Cuban Association of Agricultural and Forestry Technician's Fifth Conference on Organic Agriculture, to be held May 27-30, 2003 in Havana, Cuba; for exhibition information, contact Violeta Rodriguez, Specialist, Palacio de Convenciones, Havana; violeta@palco.cu; for presentations, contact Eduardo Martinez Oliva, actafejec@minag.gov.cu.

The 8th Congress of the International Society of Plant Pathology with be in Christchurch 2-7 February 2003. The website for the congress is http://www.lincoln.ac.nz/icpp2003/. There is an active Postharvest Pathology Committee in the Society and I believe the committee is sponsoring some postharvest symposia and some evening sessions-Dov Prusky of Israel is the current Chair.