Curvilinear Relations

Correlation and regression are based on linear relationships.

Often a limited range of values can be fit by a straight line, but for a wider range of values the relationship may curve.

To select a curve to fit the data
- look for natural or logical relationships
- use a minimum number of variables

Many natural laws, however, have been discovered by fitting a curve and then explaining the relationship.

A large number of variables can fit any relationship but explain nothing.

Power curve
\[Y = aX^b \]
\[\log Y = \log a + b \log X \]
X and Y must be positive to take the log

\[Y = aX^b \]
\[\log Y = \log a + b \log X \]

Red: \(Y = X^2 \) Blue: \(Y = 0.1 \, X^2 \)
\[Y = aX^b \]

log: \[\log Y = \log a + b \log X \]

Red: \(Y = 3X^{1/4} \)
Blue: \(Y = X^{1/4} \)

Red: \(Y = X^{-1/4} \)
Blue: \(Y = X^{-1} \)

Expected when \(Y \) and \(X \) involve different dimensions, such as height and weight
Weight is related to volume,
volume is related to \(ht^3 \)

E.g. Onion weight and diameter,
for a sphere \(V = \frac{4}{3} \pi r^3 \)
Onion Data

Weight, g

Diameter, mm

r = 0.97

Log Onion Data

Log Weight

Log Diameter

r = 100
Exponential curve
\[Y = ab^x \]
\[\log Y = \log a + X \log b \]
Semilog relationship since we have \(\log Y \) but not \(\log X \)

\[Y = a^x \quad \text{log} \quad Y = X \log a \]

Red: \(Y = 2^x \)
Blue: \(Y = \frac{1}{2}^x \)

E.g. interest rates, growth, chemical reactions, radioactive decay e.g. annual payments for compounded interest, \(A = P(1 + r)^t \)

E.g. growth of population of San Diego

Population Growth of San Diego
Polynomial curve

\[Y = a_0 + a_1X + a_2X^2 + a_3X^3 + \ldots \]

- \(X \) is linear or first degree polynomial
- \(X^2 \) is quadratic or second degree
- \(X^3 \) is cubic or third degree

\[Y = 1 + X \quad \text{and} \quad Y = 16 - 8X + X^2 \]

\[Y = -4 + 6X - (9/18)X^2 + (1/16)X^3 \quad \text{and} \quad Y = 13 - 15X + (23/4)X^2 - (3/4)X^3 + (1/32)X^4 \]

E.g. lima beans versus date of harvest
Lima Beans

Linear fit

$r^2 = 0.0015$

![Linear fit graph](image)

Quadratic fit

$r^2 = 0.984$

![Quadratic fit graph](image)

Cubic fit

$r^2 = 0.999$

![Cubic fit graph](image)
Combined curves
 e.g. \(\log Y = \log a + X \log b + X^2 \log c \)

E.g. exponential fit to San Diego population growth

\[\text{San Diego Population} \]

- Linear: \(\log \text{Pop} = 3.06 + 0.285 \text{Yr} \)
 \[r^2 = 0.974 \]
- Quadratic: \(\log \text{Pop} = 2.879 + 0.406 \text{Yr} - 0.0121 \text{Yr}^2 \)
 \[r^2 = 0.987 \]

Periodic curves
Fourier curve
 \[Y = a_0 + a_1 \cos cx + b_1 \sin cx + a_2 \cos cx + b_2 \sin cx \ldots \]
 Where
 \[x = \text{time from start} \]
 \[c = 360/\text{number of units in cycle} \]
 e.g. if units are hours, \(c = 360/24 = 15^\circ \)
 for first degree curves
 \[a_0 = \text{weighted mean or central value} \]
 \[A = \sqrt{a_1^2 + b_1^2} = \text{semiamplitude} \]
 \[\arctan(b_1/a_1) = \text{phase angle} \]
 e.g. mean monthly temperature
 e.g. circadian hormonal variation
Pulses
Waves or curves are additive

1. Calculate the overall mean.
2. Pulses or peaks can be distinguished by being > 2 standard deviations from the overall mean.
3. Mean must be recalculated without pulses after they have been identified and step 2 repeated.
4. Keep repeating until no further pulses are identified.