ICS 451: Course Review

- Network Programming
- Application Layer: HTTP, DNS, email
 - client/server organization, data encodings
- Transport Layer: TCP, UDP
 - connections, reliable transmission, adaptive timers, flow and congestion control
- Network Layer: IP and routing
- Data Link Layer: Ethernet and 802.11, framing, Medium Access Control and MAC addresses
- Principles of networking
Network Programming

- sockets, IP, addresses, ports, address families
 - SOCK_STREAM and SOCK_DGRAM
 - a stream has no message boundaries
 - sockaddr, sockaddr_in, sockaddr_in6
 - sockaddr * usually points to sockaddr_in/6
- in C, the OS doesn't know the length of your buffer, so it must be given explicitly
 - content length <= buffer length
 - content length specified on send/sendto
 - content length returned by recv/recvfrom
- connect, or listen, bind, accept
networking concepts: layers

• each layer provides services to the layer above
 – using the services of the layer below
• logically, each layer communicates with the same layer on a different machine
 – actually, each layer sends and receives using the layer below
 • except at the physical layer!
• layering simplifies protocol definition and implementation
 – layering almost requires multithreading
standard layers

- application layer
- (presentation layer)
- (session layer)
- transport layer
- network layer
- data link layer
- physical layer
Application Layer

- end-to-end communication
 - usually requires TCP and DNS
 - DNS too is in the application layer
- does everything not provided by lower layers
 - often includes security and encoding of different types of data
- headers are often human-readable
 - e.g. http, email, ftp
HTTP

- client-server system over TCP
- DNS in URL also used to select virtual server
- header is in plain text
 - all but first line have field: value
 - request has METHOD request HTTP/version
 - reply has HTTP/version code explanation
 - header ends with empty line
- many different content types, including html
email

- complex system evolved over the years
 - always uses TCP
 - in addition, also has application-level retransmissions every few hours
- servers and clients not clearly separate
 - email agent on host may be independent of email program used to write and read email
 - webmail server is an email client
- text-based protocol
DNS

- client-server architecture over UDP (port 53)
 - recursive queries: server returns answer
 - iterative queries: server may return another server
- binary encoding of packet
 - length+content encoding of domain names
 - pointers help compress packets
- essential for the modern internet
 - including www and email
Transport Layer

- end-to-end (not hop-by-hop) service
- typically TCP or UDP
- UDP provides ports and datagrams
- TCP provides ports and reliable byte streams
TCP

- connection setup (3-way handshake)
 - header bits: SYN, FIN, ACK, RST
- sequence and ack numbers
 - ack number is seq+length of payload
 - i.e. “next expected sequence number”
 - retransmission after timeout
 - out-of-order packets result in duplicate acks
 - Nagle algorithm
- flow control window
- TCB
TCP congestion control

- congestion “window” on sender
- AIMD – additive increase, multiplicative decrease
- adaptive timer
 - Binary Exponential Backoff on timer expiration
- slow start
- limits on achievable performance
 - at most, $\frac{3}{4}$ of the bottleneck bandwidth
Network Layer

- end-to-end
 - over hop-by-hop data-link layer
- almost only IP: IPv4, IPv6
- main problem solved: how to get data across various networks
- accomplished by having routing table:
 - for each destination, interface and next hop
Internet Protocol

- best effort:
 - packets can be lost, corrupted, duplicated, reordered, etc.

- addresses interpreted with respect to netmask
 - network part of the address is used in routing
 - the entire address is used for final delivery
 - network mask has initial “1” bits identifying network part of the address

- Time To Live or Hop Limit limit packet lifetime
 - both measure hops (usually) or seconds
IPv4 details

- 32-bit addresses and netmasks
- Fragmentation supported in routers
 - Don't Fragment (DF) bit set in TCP segments
 - More Fragments (MF) bit set on all but the last fragment
- Hop-by-hop header checksum
 - Changes at each hop as TTL changes
- 8-bit protocol number, 16-bit packet length
- 20-byte basic header, may have options
IPv6 details

• 128-bit addresses and netmasks
• end-to-end fragmentation only
• no header checksum
 • upper layers now required to use checksum
 • lower layers normally use CRC
• 8-bit next header, 16-bit payload length
• extension headers may follow 40-byte header
IP routing overview

• automatic way of setting up routing tables
 – uses interface IP addresses (configured)
 – uses local broadcasts

• IGPs: find optimal routes
 – for some idea of optimal, e.g. least hops

• EGP (BGP): find routes that satisfy policy
 – among the best routes for policy, choose routes that cross the fewest Autonomous Systems
IP IGPs

- **RIP**: distance vector
 - with infinity of 16
 - split horizon with poisoned reverse
 - RIPv2 supports netmasks

- **OSPF**: link state
 - flooding to deliver link state to all routers
 - Dijkstra's shortest path algorithm to compute routes
 - areas allow partitioning of information
 - backbone area must connect to all other areas
related protocols and systems

- **ICMP**
 - ping: echo request and reply
 - ICMP error messages
 - traceroute: send with low (but increasing) TTL, listen for ICMP error messages

- **DHCP**

- **NAT**

- **Firewall**
Data Link Layer

- Framing problem: how to tell where frame starts and ends
 - reserve special symbols for frame start/end
 - if symbols can occur in the data, they must be escaped by bit-stuffing or byte-stuffing

- Medium Access Control problem: how to tell when a transmission will not collide with others
 - Aloha: just send when ready, retransmit in case of collision
 - but peak performance for Aloha is low, ~18%
Ethernet

- Carrier Sense Multiple Access with Collision Detection: CSMA/CD
 - carrier sense: do not send if someone else is sending
 - collision detection: if a collision occurs, everyone knows it and discards a packet
 - limits the size of the network
 - not needed in a full duplex network where both sides send simultaneously on point-to-point links
- high throughput (but not 100%), low latency
- requires cables

- high throughput (but not 100%), low latency
- requires cables
Ethernet systems

- **hubs**: forward each bit, or jamming signal
 - broadcast only, low latency
- **learning switches**: forward each packet
 - break up the collision domain
 - only broadcast when needed
- **learning switches with STP**
 - distributed root election using uniqueness of MAC addresses
 - shortest path to root is enabled, all else blocked
 - allows redundant links
802.11/WiFi

- Carrier Detection Multiple Access with Collision Avoidance: CDMA/CA
 - carrier detection: send only if nobody else is
 - collision avoidance: do not send if RTS or CTS was heard
- ack required on wireless medium
- ad-hoc mode or infrastructure mode
- infrastructure mode based on Wireless Access Points (WAPs)
 - 802.11 supports exchanging packets with 802.3
some principles of networking

- what can go wrong, will go wrong sometimes
- good models (such as client/server) are useful
- layering
- can have reliability or real-time, not both
- window must be greater than bandwidth-delay product, or throughput will be limited by window
- performance matters
- security is hard but not impossible
 - security by obscurity only OK if really secure