ICS 451: Today's plan

- Carrier Sense Multiple Access (CSMA)
 - with Collision Detection (CSMA/CD)
 - with Collision Avoidance (CSMA/CA)
- real-time properties of probabilistic MAC
- PPP
- Ethernet
Ethernet Retransmission

- after a collision, wait 0 or 1 slot times
- after the same packet has collided again, wait 0, 1, 2, or 3 slot times, chosen at random
- double the maximum waiting time after each collision
 - up to 1,024 slot times
- transmission fails after 16 attempts
- Binary Exponential Backoff
 - also used in TCP
802.11 CSMA

- wireless medium, sender can't detect collision
- each frame acknowledged by receiver
 - separate ack frames
- sender listens before transmission
 - a short interval (SIFS) before sending an ack
 - before sending a data packet, either
 - a medium interval (DIFS) if there was no collision
 - a longer interval (EIFS) if collision was detected
802.11 CSMA/CA

- sender can reserve channel:
 - Request to Send, RTS frame
 - receiver replies with Clear to Send, CTS frame
- anyone in range of RTS or CTS avoids sending
- RTS/CTS are optional in 802.11
 - more useful for larger packets
Summary

- ALOHA is simple: transmit when ready
 - retransmit if necessary
 - still used, e.g. in satellite networks
 - sometimes used to reserve voice channels, so efficiency of the aloha part is not paramount

- Carrier sense allows higher efficiencies
 - best on a wire: quick collision detection and retransmission
 - CA similar, but slower overall, more overhead
Predictable Performance: real-time traffic

- probabilistic MAC is simple and very successful
- probabilistic MAC offers no guarantees about *when* a packet will be transmitted, if at all
 - it might take $7 \times 1,024$ slot times
 - before the packet is dropped!
- this is bad for real-time traffic
 - only very lightly loaded networks can be used for high-quality voice or video
Predictable Performance: solutions

- use deterministic MAC
 - e.g. token ring
 - transmit delay is bounded for any station
- give real-time traffic higher priority, and have a centralized system allocate traffic
 - 802.11 Point Coordination Function (PCF)
 - Wireless Access Point grants access to PCF-capable stations, which can send without contention
 - after PCF, Distributed Coordination Function (DCF) allows all stations to contend
Data Link Layer Protocols

- SLIP
- Point-to-Point Protocol (PPP)
- Ethernet (802.3)
- WiFi (802.11)
 - and many more
PPP

• Point-to-Point Protocol
• for use over serial lines or telephone modems
• framing uses 01111110 as frame start and end
 – can use bit-stuffing or byte-stuffing
• supports multiple protocols, not just IP
• supports authentication (login)
 – password authentication protocol, PAP
 – extensible authentication protocol, EAP
• supports per-protocol options, e.g. assignment of IP addresses
Ethernet

- minimum payload size 46 bytes
 - + 14-byte header, 60 bytes
 - + 4-byte CRC, 64 bytes
- maximum payload size 1500 bytes
 - 1514 (1518) byte frame size
- globally unique 6-byte (48-bit) MAC addresses
 - ff:ff:ff:ff:ff:ff is broadcast address
 - LSB of first byte set to 1: multicast address
 - 24-bit blocks (OUIs) sold to manufacturers
 - Organization Unique Identifier
Ethernet Frame format

- preamble, 8 bytes, used for clock synchronization
- destination address, 6 bytes
- source address, 6 bytes
- ethernet type, 2 bytes, used as protocol ID
 - 0x800 for IPv4, 0x806 for ARP, 0x86DD for IPv6
- payload, 46-1500 bytes
- CRC, 4 bytes
Ethernet optimizations

- destination address at beginning, and hardware-specific MAC address, allow early discard of frame
- CRC at end allows CRC computation as the frame is being sent or received
Ethernet design problems

- header size is not a multiple of 4 bytes
 - hard to process in software
- no payload length field
 - protocols sending less than 46 bytes need to record the length of the header
 - an additional protocol, Logical Link Control or LLC, allows definition of length
 - but rarely used in practice
Ethernet service

• connectionless
• packets very likely to be delivered
 – as long as there is physical connectivity
• packets delivered to the entire network
 – or not delivered to anyone
• every host sees same packets in same order
• packets delivered or collision detected
Ethernet Physical Layers

- **10Base5**: 10Mb/s over thick coaxial cable
 - vampire tap
- **10Base2**: 10Mb/s over thin coaxial cable
 - BNC connectors
- **10BaseT, 100BaseT**: twisted pair (RJ45)
 - point-to-point connections only, star topology
 - hubs connect all the hosts
- **fiber**
- **Gb/s, 10Gb/s**
Ethernet Hubs

- physical-layer (bit-level) forwarding
 - with signal regeneration
 - generates or propagates jamming signal
- topology cannot have any loops
- entire network is one collision domain
 - only one packet live at a time
 - limits size of the network