ICS 451: Today's plan

- IP routing: domains, policy, BGP
High-Level Structure of the Internet

- thousands of domains (Autonomous Systems)
- each operated independently
- some are for profit
 - some willing to carry transit traffic
 - others are not
- some are mostly to generate content, others mostly to consume content
- who pays?
customer and peer relationships among domains

- stubs only connected to another domain
- multi-homed domains multiply connected
- transit: multi-homed and willing to carry data
- stub domains usually have to pay their provider
- providers at the core of the internet usually peer with each other without paying
 - can peer at an Internet Exchang Point (IXP)
 - or through a private peering link
- other providers negotiate case-by-case
policy: where the traffic goes

- Autonomous System A peers with B and is a customer of C
 - should send to B all traffic for B
 - doesn't want to send B's traffic to C
- import: what routes we accept from domain
- export: what routes we give to domain
- ranking: which routes are preferred
 - based on non-technical factors
BGP

- Border Gateway Protocol (v4)
- each AS has an AS number
- similar to distance vector, but each route lists the number of every AS on the route
 - path vector protocol
- policy preferences can be applied based on the list of AS numbers
- only “best” route (by policy) forwarded
BGP properties

- runs over TCP (port number 179)
- BGP speakers in different domains establish BGP sessions with each other
 - sessions are configured by network admins
- information is only sent once
 - assuming reliable delivery
- updates only report changes from previously sent messages
- if a connection is inactive for 90s, all its routes are withdrawn
BGP messages

- open: session initialization
- notification: session shutdown
- update
 - withdraw route (\textit{withdraw} message)
 - new route (\textit{update} message)
 - update existing route (\textit{update} message)
- keepalive: avoid 90s timeout
 - sent if there is ever a 30s or longer gap in update messages
RIB and FIB (and MIB)

- Routing Information Base contains all acceptable routes
 - may include multiple routes to same destination
- Forwarding Information Base contains at most one route to each destination
 - used to actually forward packets
- originally, Management Information Base contains description of managed systems
BGP Route Management

- one import filter for each peer
- any routes that pass are added to RIB
- each best route from RIB placed into FIB
 - “best” determined by policy
- routes from FIB that pass the export filter for a peer, are sent to that peer
- new routes added to the FIB (new “best” routes) are re-advertised immediately
 - like Distance-Vector
 - but change routes advertised too
Multiple BGP routers

- Multiple BGP routers within a domain use BGP to exchange routing information
 - iBGP session used within domain
 - Routers may not be directly connected
 - eBGP session used across domains
 - Only between directly connected routers
- iBGP used to forward information learned over eBGP only
- Need to forward packets between BGP routers
 - MPLS, IP-in-IP
Routing Policy

- routes with higher local preference used first
 - customer routes have high local pref
 - provider (expensive) routes have low local pref
- shortest path used when local pref is same
- prefer routes with smallest Multi-Exit Discriminator (MED) among same AS routes
- prefer routes going outside AS
- prefer routes with closest next-hop
- break ties with lower router ID
BGP summary

- used for interdomain routing
- policy more important than path optimality
- TCP connections allow focus on maintaining state rather than ensuring packet delivery
- connections set manually between trusted peers