ICS 451: Today's plan

• Exam Review:
 – TCP: connections, TCB, Nagle Algorithm, retransmissions, congestion control
 – Network-layer forwarding: routing tables
 • static routes, distance-vector, link-state
 – IPv4, IPv6: addresses, netmasks, default routes
 – ICMP, ICMPv6: ping, traceroute
 – ARP, DHCP, IPv6 autoconfig, NAT/firewall, security
 – RIP, OSPF

exam 2 may include material from exam 1
TCP

- connections
- TCB
- Nagle Algorithm
- retransmissions
 - adaptive timer, binary exponential backoff
- congestion control
 - congestion window
 - AIMD
 - slow start
Network-Layer forwarding

- routing tables
- static routes
- dynamic routes:
 - distance-vector
 - link-state
Routing Algorithms

- distance-vector
 - send to my neighbors my distance to each destination
 - slower to recover from lost links (∞ is 16)
 - less information sent

- link-state
 - flood to everyone my link-state, i.e. the information about the routers I can talk to
 - information updated quickly
 - more routing information sent across network
IP

- IPv4, IPv6
- addresses: 32 bits, 128 bits
 - hierarchical, point-of-attachment address
 - routing tables can summarize routes
- netmasks
 - network vs. host part of the address
 - default route (netmask 0.0.0.0 or /0)
 - every network has n addresses, where n is
 $2^{32 - \text{mask-bits}}$ or $2^{128 - \text{mask-bits}}$
IP details

- headers: source and destination address, TTL or Hop Limit, protocol or next header
- fragmentation, path MTU discovery
- forwarding strictly follows routing table
ICMP

- network debugging: ping
- error reporting: undelivered packets because
 - destination unreachable
 - MTU too small
 - TTL/HopLimit exceeded
 - did not understand packet
- network maintenance (generally deprecated)
 - redirect
 - source quench
ARP/NDP

- given the next-hop IP,
 give me the next-hop MAC address
- broadcast request,
 - unicast reply
 - add to ARP cache whenever a message is seen
- Address Resolution Protocol is for IPv4
- Neighbor Discovery Protocol is for IPv6
DHCP/SLAC

- give me a valid IP address and router info
 - also netmark, DNS servers
- broadcast request, unicast reply
- IPv6 automatically gives us a valid link-local IP address
 - Stateless AutoConfiguration
 - Router Advertisements tell us the routers on this network
- Dynamic Host Configuration Protocol has versions for both IPv4 and IPv6
NAT and firewall

- **NAT**: reduction in the number of public IPs
- **firewall**: protect unmanaged hosts
- combine well: NAT only allows outgoing connections
 - unless configured otherwise
- **NAT table** has two local IPs and port numbers
 - one to use for packets inside the network
 - one to use for packets on the Internet
security

- ARP and DHCP/SLAC responses may be sent by an impersonator
 - the MAC address of X is Y (really should be Z)
 - I am a default router on this network
 - use this IP address (which may be wrong or duplicate)
RIP

- distance vector
 - split horizon with poisoned reverse
 - ∞ is 16
 - updates every 30s, routes timeout after 3min
- usually used on smaller, more static, less-managed networks
 - no areas, all routers are equivalent
OSPF

- link state
 - within the local area
 - only summary information sent outside the area
- Backbone area must be connected to all other areas
- Hello packets sent every 10s
- used on larger, more managed and dynamic networks
Assignments:

- Assignment 5: DNS client
- Assignment 6: reliable transmission, Alternating Bit Protocol
 - and beginning of simulation using UDP
- Assignment 7: TCP connections
- Assignment 8: IPv4 routing tables, forwarding
- Assignment 9: IPv6 routing tables, forwarding