ICS 451: Today's plan

- Firewall
- NAT
- Home “routers”
- IP routing: RIP, OSPF
Firewall: motivation I

• A good way to attack a computer is to connect to a server running on the computer
 – e.g. a mail server intended to handle local mail
 – or a name server used by local applications

• well-designed servers should:
 – default to being secure
 • and be easy to configure to be secure
 – not be vulnerable to attack

• many servers are not well-designed

• better: block incoming connections altogether!
Firewall: motivation II

- a network administrator controls the router
- but may not control individual computers
 - especially with BYOD (bring your own device)
- users may have little security knowledge
- so: block all incoming connections
- unblock selectively when someone has a need

- at home, unblock only if user knows enough to configure the home “router”
Firewall

- A firewall is a special kind of router
 - forwards packets, but
 - usually does not implement routing protocols
 - only serves as default gateway
- By default, a firewall blocks incoming connections
 - must work at the TCP/UDP/ICMP level
 - default is secure
 - configuration permits access to servers
 - client-only machines are more secure
Firewall challenges

• one more device to configure and maintain
 – configuration may be incorrect
 • especially if the network changes
• does not protect against attacks that attract vulnerable clients to external servers
 – phishing attacks
 – Java/Javascript attacks on browsers
• does not protect against attackers who are behind the firewall
 – e.g. devices compromised by viruses
Intrusion Detection System, IDS

- a firewall that also pattern-matches traffic
- trying to detect attacks
- response may include:
 - shutting down offending traffic
 - shutting down compromised device
 - alerting network administrator
IDS challenges

- same as virus detection: patterns may be obsolete (no protection against zero-day attack)
- needs very high speed pattern matching
 - may need to reassemble TCP streams
- too many false positives
- cannot inspect encrypted payloads
Network Address Translation (NAT)

- due to scarcity of IPv4 addresses, better to use a single address for many clients
 - hosts “inside” use local IP addresses
 - packets going “out” are re-written to have as source address the IP address of the NAT
 - may need to change source port number too
 - packets coming “in” are re-written to have as destination address the internal IP address of the local device
 - as identified by destination port number
 - must keep a table of such translations
NAT table

- protocol, inside local IP and port, outside local IP and port, remote IP and port
 - ICMP doesn't have ports, so use ID instead
- incoming packet matching protocol, remote IP and port, outside local IP and port, given inside local IP and port and forwarded
 - if no match, packet is dropped (firewall)
- outgoing packet matching all 5 is rewritten and forwarded
 - add to table if no match (maybe only SYN)
- table entries time out after a while
NAT details

- a NAT may manage multiple public IP addresses
- NAT timeouts can vary widely, esp. for UDP
- local port need not be rewritten if unique
- TCP/UDP header checksum must be recomputed when changing IP addresses
- NAT only works with protocols it understands!
Home “router”

- Firewall + NAT
- distinct “inside” and “outside”
- DHCP to get its outside address, default gateway, DNS server(s)
- provides DHCP (and may provide caching DNS) to its inside hosts
- acts as a router in forwarding packets (HW 10)
- does not run any routing protocols, so in that sense not a router
IP routing

- how to build the routing tables
- basically distance vector or link state
 - path vector includes details about the path
- three main protocols:
 - RIP, which uses distance vector
 - used within smaller networks
 - OSPF, which uses link state
 - used within larger networks
 - BGP, which uses path vector
 - used in the Internet backbone
IP routing overview

• administrators decide which routing protocol to use within a domain
 – this is an IGP, Interior Gateway Protocol
 – RIP and OSPF are IGPs

• formally a domain is known as an Autonomous System, AS

• BGP is used between Autonomous Systems
 – and is an EGP, Exterior Gateway Protocol
 – BGP is currently on Version 4
IP routing goals

- **for an IGP, the goal is to find the best route to a destination**
 - assumes all routers in the AS are trusted and somehow equal
 - links need not be equal
- **for an EGP, the goal is to find a route that satisfies internal policy**
 - policy may aim for the cheapest route
 - use AS x only if AS y is not available
 - policy may avoid routing through a specific AS
 - for example, a competitor
RIP

- Routing Information Protocol (v1, v2)
 - RIPng for IPv6
- distance vector
 - with split horizon with poisoned reverse
 - infinity is 16
 - messages sent every 30s, time out after 3min
- messages contain the distance to each destination (from the routing table)
 - lower-distance routes added to the routing table
RIP properties

- UDP port 521
- v2 can handle masks
- fast convergence when new links added
- slow convergence when existing links removed
- simple to configure
- supports networks with diameter up to 15
OSPF

- Open Shortest Path First (v2)
 - OSPF v3 for IPv6
- link state (HELLO packets every 10s)
- can split network (AS) into areas:
 - the backbone (area 0) connects to all other areas
 - complete link state distributed within area
 - summary info distributed between areas
 - area border routers span multiple areas
 - and are part of the backbone area
OSPF properties

- runs directly over IP (protocol number 89)
- fast convergence when new links added
- fast convergence when existing links removed
 - link state floods information quickly
- harder to configure if multiple areas
 - different types of routers,
 - e.g. area border routers
- supports large networks (100s of routers)
- IS-IS is similar to OSPF