Chapter 17
Chromosomal Inheritance

Outline
- Human Life Cycle
 - Mitosis
 - Stages of Mitosis
 - Meiosis
 - Crossing-Over
 - Stages of Meiosis
 - Chromosomal Inheritance
 - Autosomal Syndromes
 - Sex Chromosomal Syndromes

Human Life Cycle
- Mitosis ensures every cell has a complete number of chromosomes.
- Meiosis reduces the chromosome number by half in gametes.
 - Sperm and egg (gametes) are haploid (n).
 - Somatic cells are diploid (2n).

Mitosis
- Mitosis occurs in humans when tissues grow or when repair occurs, and produces daughter cells with the same number of chromosomes as the parental cells.
 - Sister chromosomes separate, and one of each kind of chromosome goes into each daughter cell.

Mitosis Overview

Cell Cycle
- Cell cycle consists of:
 - Interphase.
 - Mitosis.
 - Cytokinesis.
 - Interphase is the interval of time between cell divisions, and is the phase the cell is in the longest.

Stages of Mitosis
- Prophase.
 - Centrioles outside nucleus move away from each other.
 - Spindle fibers appear.
 - Nuclear envelope fragments.
- Metaphase.
 - Spindle fully-formed.
- Chromosomes align at the equator.

9 Stages of Mitosis
- Anaphase.
 - Sister chromosomes separate and daughter chromosomes move to the poles.
 - Spindle fibers shorten and pull chromosomes towards the poles.
- Telophase.
 - Chromosomes arrive at the poles.
 - Chromosomes become indistinct chromatin.
 - Two daughter cells.

10 Meiosis
- Meiosis requires two nuclear divisions and results in four daughter cells, each with half the number of parental chromosomes.
 - Humans have 23 pairs of homologous chromosomes.
 - During meiosis I synapsis occurs allowing crossing-over.
 - Exchange of genetic material between chromatids.

12 Crossing-Over

13 Meiosis
- At the beginning of Meiosis II, chromosomes are dyads because each is composed of two sister chromatids.
- During Meiosis II, sister chromatids separate in each of the cells from Meiosis I.
 - Each of the resulting four daughter cells has the haploid number of chromosomes.

14 Meiosis Overview

15 The Importance of Meiosis
- Three ways individuals are assured a different genetic combination than either parent.
 - Crossing-over recombines genes on sister chromosomes of homologous pairs.
 - Following meiosis, gametes have all possible chromosome combinations.
 - At fertilization, sperm and egg carry varied chromosome combinations.

16 Spermatogenesis and Oogenesis
- Spermatogenesis occurs in the testes of males and produces haploid sperm.
 - Once started, continues to completion.
- Oogenesis occurs in the ovaries of females, and produces haploid eggs.
 - Does not necessarily go to completion.
Stages of Meiosis
- First Division.
 - Prophase I - Spindle appears, and nuclear envelope fragments.
 - Metaphase I - Tetradis line up at equator.
 - Anaphase I - Homologous chromosomes of each pair separate and
 move to opposite poles of the spindle.
 - Telophase I - Spindle disappears and nuclear envelope reforms.
 - Cytokinesis - Plasma membrane furrows.

Stages of Meiosis
- Second Division.
 - Prophase II - Spindle appears and nuclear envelope disassembles.
 - Metaphase II - Dyads line up at equator.
 - Anaphase II - Sister chromatids separate and move towards
 poles.
 - Telophase II - Spindle disappears and nuclear envelope reforms.
 - Cytokinesis - Plasma membrane furrows.
 * Four haploid daughter cells produced.

Chromosomal Inheritance
- Humans have 22 pairs of autosomes, and one pair of sex chromosomes.
 - Abnormal chromosome number or structure often leads to a syndrome.
 - Amniocentesis and chorionic villi sampling can be used to obtain a genetic
 sample to produce a karyotype.
 - Visual display of chromosomes arranged by size, shape, and banding
 pattern.

Human Karyotype Preparation

Autosomal Syndromes
- Nondisjunction occurs:
 - During Meiosis I when both members of a homologous pair go to the
 same daughter cell.
 - During Meiosis II when sister chromosomes fail to separate and both
 daughter chromosomes go to the same gamete.

Down Syndrome.
 - Trisomy 21.
 - Incidence increases with mother's age.
- Cri du Chat Syndrome.
 - Chromosomal deletion.

Sex Chromosomal Syndromes
- Fragile X Syndrome.
- Abnormal Sex Chromosome Number.
 - Turner Syndrome.
 - XO.
 - Klinefelter Syndrome.
 - Two or more X chromosomes with a Y.
 - Poly-X Females.
 - More than two X chromosomes.
 - Jacobs Syndrome.
 - XYY.

25 Turner and Klinefelter Syndromes

26 Review
 - Human Life Cycle
 - Mitosis
 - Stages of Mitosis
 - Meiosis
 - Crossing-Over
 - Stages of Meiosis
 - Chromosomal Inheritance
 - Autosomal Syndromes
 - Sex Chromosomal Syndromes