University of Hawaii at Manoa Department of Mechanical Engineering

ME650 Surface Phenomena (3 Credits) Fall 2010

<u>Instructor</u>

Yi Zuo Email: <u>yzuo@hawaii.edu</u> Office: Post-207A Phone: 956-9650 Office Hours: Wednesday 3:30-4:30 pm or by appointment

Course description

A surface or interface is defined as the area where two immiscible phases meet. Such surfaces include air-liquid (drops, bubbles, clouds, foams, hairspray, ice cream), liquidliquid (emulsions, milk), air-solid (particles, aerosols, smoke), liquid-solid (slurries, sols, butter), and solid-solid (concrete, ceramics) surfaces. Behavior of these surfaces can be further complicated by the presence of surface active molecules, such as surfactants adsorbed at the surfaces. The surfaces possess many interesting characteristics distinct from the bulk phases. These properties become increasingly important as the size of a system continues to shrink, such as in microelectronics, lab-on-a-chip, cellular biomechanics, and nanotechnology. For example, on the microscale and nanoscale, gravity is less important, but van der Waals forces become dominant. The phenomena that take place at the surfaces are collectively called surface phenomena.

This course introduces the fundamental and modern concepts of surface phenomena. The course begins with the introduction of fundamental surface thermodynamics, followed by quantitative studies of capillarity and wetting phenomena, introduction of surface forces, surfactants, and particles. Each concept will be followed by practical examples structured around a series of case studies and modern applications in nanotechnology and biotechnology. By the end of this course, the students are expected to learn fundamental concepts related to colloid and surface science, and should be able to identify and solve real-world and simple research problems related to surface phenomena.

Prerequisites: ME311; Graduate and senior standing or permission of instructor.

<u>Textbooks</u>

- John C. Berg, An Introduction to Interfaces and Colloids. The Bridge to Nanoscience, World Scientific, 2010.
- Hans-Jürgen Butt, Karlheinz Graf, and Michael Kappl, *Physics and Chemistry of Interfaces*, 2nd ed, Wiley, 2006.

Supplemental textbooks

- Paul C. Hiemenz, and Raj Rajagopalan, *Principles of Colloid and Surface Chemistry*, 3rd ed, Taylor & Francis, 1997.
- A. Wilhelm Neumann, and Jan K. Spelt (eds) *Applied Surface Thermodynamics*, Marcel Dekker, 1996.
- Pierre-Gilles de Gennes, Francoise Brochard-Wyart, and David Quere, *Capillarity* and Wetting Phenomena Drops, Bubbles, Pearls, Waves, Springer, 2004.

Topics to be covered	<u>Berg</u>	<u>Butt</u>
• Introduction to colloids and surfaces	Ch. 1	Ch. 1
• Advanced and surface thermodynamics	Ch. 3	Ch. 3
• Thermodynamics for bulk phases		
• Thermodynamics for surface phases: Gibbs adsorption equation		
• Thermodynamics for line phases		
 Simple liquid-fluid systems: Laplace's equation 		
 Simple liquid-vapor-solid systems: ` 	Young's equation	
Capillarity phenomena	Ch. 2	Ch. 2
 Air-liquid and liquid-liquid interface 	es	
 Study of menisci: capillary rise, droplet and bubbles 		
• Surface tension measurements		
• Modern applications: microfluidics		
Wetting phenomena	Ch. 4	Ch. 7
• Air-solid and liquid-solid interfaces		
• Contact angle phenomena: wettability, spreading, adhesion and cohesion		
• Contact angle measurements		
• Contact angle interpretation: determination of solid surface tension		
• Modern applications: superhydroph		-
• Intermolecular and surface forces	Ch. 7	Ch. 6
• van der Waals forces		
• Surface forces due to VDW interactions: the Hamaker constant		
• Surface forces other than VDW interactions: DLVO theory		
• Modern applications: atomic force n		
• Soluble and insoluble surfactants	Chs 3,9	Ch. 9,12
 Surfactant aggregations: micelles, emulsions, foams Surfactant at interfaces 		
• Surfactant at interfaces		
Soluble monolayers (Gibbs films)Insoluble monolayers (Langmuir films)		
	inun mins)	
 Langmuir-Blodgett films Modern applications: lung surfactan 	t	
 Particles* 		
• Surface energetics of particles		
 Particle engulfment 		
 Modern applications: nanoparticles, 	environmental issu	es of fine and ultrafine
particles, particle-based drug deliver		es of fine and arrante
F	- 5	
* Only cover when time permits.		
Exams and grading		
Homework and class participation	30%	
	30%	

- Midterm exam
 30%
- Project with class presentation and written report 40%