Lack clutch size: maximize offspring per reproductive event

![Graph showing survival and yield vs eggs]

- **Survival**
 - Survival increases with clutch size up to 5 eggs, then decreases.
 - Max survival occurs around 5 eggs.

- **Yield (eggs x survival)**
 - Yield increases with clutch size up to 5 eggs, then decreases.
 - Max yield occurs around 5 eggs.

The graphs illustrate the trade-off between survival and yield, with optimal clutch size around 5 eggs for maximizing offspring per reproductive event.
Lack clutch size: maximize offspring per reproductive event

 Yield: (eggs x survival)

 Surplus: (1 - survival)
observed clutch sizes: smaller than Lack optimum
A tradeoff: adult survival also depends on reproductive effort (e.g. clutch size):

13 species of lizards (from Tinkle 1969, in Futuyma 1986)
optimal reproductive effort when **adult survival decreases** (and total fecundity increases) **with increasing reproductive effort**:

simple life history:\n
\[
\begin{align*}
N_{t+1} &= (s_0B + s_a)N_t \\
\lambda &= s_0B + s_a = F + s_a \\
\end{align*}
\]

Optimal reproductive effort will maximize \(\lambda \).

Let \(\theta \) be the fraction of available resources devoted to reproduction (at each time step). Fecundity (\(F \)) will increase, and survival (\(s \)) will decrease, as \(\theta \) increases. For example:

\[
\begin{align*}
F(\theta) &= b \theta^c \\
s_a(\theta) &= a(1-\theta^d) \\
\lambda &= b \theta^c + a(1-\theta^d) \\
\end{align*}
\]

To maximize \(\lambda \), take its derivative and set equal to 0:

\[
\frac{d\lambda}{d\theta} = cb\theta^{c-1} - da\theta^{d-1}
\]

\[
\frac{d\lambda}{d\theta} = 0 \quad \text{when}
\]

\[
\begin{align*}
theta^{c-1}\theta^{d-1} &= da/cb \\
\theta^{c-d} &= da/cb \\
\theta_{opt} &= (da/cb)^{1/(c-d)}
\end{align*}
\]

in text (Box 7.2), \(c = 1/2, d = 2 \), so

\[
\hat{\theta} = \left(\frac{2a}{b/2} \right)^{-3/2} = \left(\frac{4a}{b} \right)^{-2/3} = \left(\frac{b}{4a} \right)^{2/3}
\]
So long as $c < 1$ and $d > 1$,
- the F and s_a curves will be convex and
- the optimal θ will increase with increasing ratio b/a,
 i.e. as fecundity increases relative to adult survival.

Remember that $F = bs_0$, so increasing either the birth rate or juvenile survival will increase the
optimal reproductive effort (all else remaining equal).

If $c > 1$ and $d < 1$,
- the F and s_a curves will be *concave* and
- the optimal θ will be either
 - 1 (semelparity) if $b > a$ (i.e. max $F > \max s_a$), or
 - 0 (never reproduce) if $b < a$

Why would the curves be *concave*?
 - yuccas & agaves (Shaffer 1974): strong competition for pollinators is associated with concave
 curve for F, and semelparity

How does the degree of convexity affect the optimal θ?

When is semelparity optimal even with convex curves?
 - When F is increasing faster than s_a is decreasing even as θ approaches 1
fitness set analysis (Levins):

Since \(F \) and \(s_a \) both are functions only of \(\theta \), either one can be expressed as a function of the other, e.g.

\[
F = b \theta^c \quad s_a = a(1-\theta^d)
\]

Rearrange 2nd eqn. to express \(\theta \) in terms of \(s_a \):

\[
\theta = (1-s_a/a)^{1/d}
\]

Insert this into 1st eqn.:

\[
F = b (1-s_a/a)^{c/d}
\]

This curve represents the combinations of \(F \) and \(s_a \) produced by all values of \(\theta \) from 0 to 1.

We want to find the point on this curve which produces the maximum \(\lambda \). We can rearrange \(\lambda = F + s_a \) to again express \(F \) as a function of \(s_a \), i.e.

\[
F = \lambda - s_a
\]

This is a straight line with slope -1 and Y intercept = \(\lambda \); all points along such a line have equal fitness (\(\lambda \)).

The optimal strategy will be the point where the curve of \((s_a, F)\) just touches the highest straight line with slope -1.

Comments on the fitness-set method:

(1) Where the curve and the straight line just touch, the slope of the curve must be -1 (and it is shallower to the left and steeper to the right). So we could find the optimum analytically by taking the derivative of the \(F \) vs. \(s_a \) curve, setting it equal to -1, and solving for \(s_a \).

(2) The set of phenotypes could be expressed in terms of \(B \) and \(s_a \) (assuming \(s_0 \) is independent of reproductive effort). Then \(\lambda = s_0 B + s_a \) would be rearranged to give

\[
B = (\lambda - s_a)/s_0 = (\lambda/s_0) - (1/s_0)s_a
\]

So now in a plot of \(B \) vs. \(s_a \), equal-fitness contours are straight lines with slope of \(-(1/s_0)\).
Other life history tradeoffs:

- offspring number vs. offspring size
- parental care (increasing \(s_0 \)) vs. additional offspring
 e.g. altricial vs. precocial offspring
- timing of metamorphosis, migration, etc.
- dispersing vs. staying home
 (fitness consequences of dispersal typically depend on whether others are dispersing, so *game theory* rather than simple optimization may be needed)
- daughters vs. sons (i.e. sex ratio)
 (fitness consequences definitely depend on sex ratios produced by others, so *game theory* is needed)
- ??? others ???