#1. Peer Credit Assignment

1 Point Extra Credit for replying

Please list the names of the other members of your peer group for class this past week and the number of points you think they deserve for their participation in group work on the two days combined.

- You have a total of 6 points to allocate across all of your peers.
- You can distribute the points equally, give them all to one person, or do something in between.
- You need not allocate all the points available to you.
- You cannot allocate any points to yourself! Points allocated to yourself will not be recorded.

#2 Constructing and extracting the solution for Longest Path (10 pts)

In the following you use the posted solution to `LongestPathValueMemoized` from class last week.

(a) (5 pts) Rewrite `LongestPathValueMemoized` to `LongestPathMemoized` that takes an additional parameter `next[1..|V|]`, and records the next vertex in the path from any given vertex `u` in `next[u]`. Assume that all entries of `next` are initialized to 1 by the caller.

(b) (2 pts) Once that is done, write a procedure that recovers (e.g., prints) the path from `s` to `t` by tracing through `next`.

(c) (2 pts) What is the asymptotic runtime of your total solution to the Longest Path problem in terms of `|V|` and `|E|`? Include all steps (initializing arrays,
LongestPathMemoized, and printing the solution). **Hint:** Count in aggregate across all calls rather than trying to figure out how many times the loop runs on a given $\text{Adj}[u]$.

(d) (1 pt) What is the asymptotic use of space of your solution in terms of $|V|$ and $|E|$?

#3 LCS by Suffix (15 pts)

Problem 2: LCS by Suffix

In this problem you will redo the derivation of the LCS dynamic programming algorithm to be a variation that works on the suffixes rather than the prefixes. The intention is that revising a published derivation will help you see the approach before we ask you do one “from scratch” on your own.

In Topics 12 Lecture Notes Dynamic Programming - http://www2.hawaii.edu/~suthers/courses/ics311s16/Notes/Topic-12.html#LCS, the Longest Common Subsequence (LCS) problem is analyzed based on the notation:

$$X_i = \text{prefix } \langle x_1, \ldots, x_i \rangle$$

$$Y_i = \text{prefix } \langle y_1, \ldots, y_i \rangle$$

But the optimal LCS substructure(s) can be also suffixes rather than prefixes. (Informally: It doesn’t matter whether we start looking for the substructures from the beginning of the sequences X and Y of from their end.) A visualization is available to help you understand the difference between the prefix and suffix versions: http://www2.hawaii.edu/~janst/311/algorithms/lcs.html You’ll see that in the suffix approach the arrows go in a more natural direction.

Below we step you through the derivation of a symmetric version of LCS based on suffixes:

$$X_i = \text{suffix } \langle x_i, \ldots, x_m \rangle$$

$$Y_j = \text{suffix } \langle y_j, \ldots, y_n \rangle$$

(a) (3 pts) Reformulate **Theorem 15.1** for the suffix version by filling in the “…” below:
Let \(Z = \langle z_1, ..., z_k \rangle \) be any LCS of \(X = \langle x_1, ..., x_m \rangle \) and \(Y = \langle y_1, ..., y_n \rangle \). Then

1.
2. (If the first characters of \(X \) and \(Y \) match, then these first characters are also the first character of the LCS \(Z \), so we can discard the first character of all three and continue recursively on the suffix.)
3.
4.
5. (If the first characters of \(X \) and \(Y \) don't match each other, then the suffix \(Z \) must be in the substrings not involving these characters, and furthermore we can use the first character of \(Z \) to determine which one it lies in.)

(To keep this problem set from getting too long we will skip the proof, but it is an easy translation of the proof on page 392 of CLRS.)

(b) (5 pts) Now redefine the **Recursive formulation** accordingly (again, fill in the “…)):

Define \(c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j \). We want to find \(c[\ldots, \ldots] \).

\[
c[i, j] = \begin{cases}
0 & \text{if } i = \ldots \text{ or } j = \ldots \\
\{ c[\ldots, \ldots] & \text{if } i \ldots, j \ldots \text{ and } x_i = y_j \\
\{ \text{max(} \ldots & \text{if } i \ldots, j \ldots \text{ and } x_i \neq y_j \\
\end{cases}
\]

Note that the original formulation started with \(c[0,0] \) even though there is no \(x_0 \) or \(y_0 \).

Hint: You do not need \(c[0,0] \), but your \(c[] \) does need indices that go beyond the range of the indices in \(X \) and \(Y \).

(c) (5 pts) Write pseudocode for LCS-LENGTH according to your **Recursive formulation**. (**Hint:** the arrows need to be different.)

(d) (2 pts) In the Notes, the longest subsequence could be only ‘printed’ with PRINT-LCS and the pseudocode needed recursion. With your ‘suffix’ method, you can do better and simpler: Write LCS(b,X,m,n) pseudocode that returns the subsequence directly. Use a vector to store the result. A vector is like an array but grows as needed.

#4 Activity Scheduling with Revenue (15 pts)
In the greedy algorithm class you found out that one can't use a greedy algorithm when the problem is to maximize the revenue from activities, and we noted that dynamic programming will apply. Here you will develop the DP solution following the same steps as for the other problems (e.g., problem 3 above), but you are responsible for the details. Your analysis in (a) and (b) below should mirror that of section 16.1 of CLRS.

(a) (3 pts) Describe the structure of an optimal solution \(A_{ij} \) for \(S_{ij} \), as defined in CLRS, and use a cut and paste argument to show that the problem has optimal substructure.

(b) (3 pts) Write a recursive definition of the value \(val[i,j] \) of the optimal solution for \(S_{ij} \).

\[
val[i,j] =
\]

(c) (6 pts) Translate that definition into pseudocode that computes the optimal solution.

Hints: Create fictitious activities \(a_0 \) with \(f_0 = 0 \) and \(a_{n+1} \) with \(s_{n+1} = \infty \). Define tables \(val[0..n+1,0..n+1] \) for the values and \(activity[0..n+1,0..n+1] \), where \(activity[i,j] \) is the activity \(k \) that is chosen for \(A_{ij} \). Use a bottom-up approach, filling in the tables for smallest problems first and then by increasing difference of \(j-i \).

(d) (2 pts) Write pseudocode to print out the set of activities chosen.

(e) (1 pt) What is the asymptotic runtime of your solution including (c) and (d)?