In our chaotic lives we usually do not try to specify our plans in great detail, or if we do, we should be prepared to make major modifications. Our plans for what we want to achieve are accompanied with situations we must avoid. Disturbances often disrupt our immediate plans, so we adapt to new situations. We only have partial control over our futures. The Partial Control aims at providing a general procedure to deal with chaotic situations where we try to avoid disasters, constantly revising our trajectories. More mathematically, the partial control of chaotic systems is a new kind of control of chaotic dynamical systems, in the presence of disturbances, where the goal is to avoid certain undesired behaviors without determining a specific trajectory. The surprising advantage of this control method is that it allows the avoidance of the undesired behaviors even if the control applied is smaller than the external disturbances of the dynamical system. A key ingredient of this method is what we call safe sets. Recently we have developed a general algorithm for finding these sets in an arbitrary dynamical system, if they exist. In this talk I will give a global overview of this control method and the most recent developments. In addition, I will also show some recent applications in Ecology, Biology, Economy and Mechanical Engineering.