Question 1. Let \(a, b \in \mathbb{Z} \). Show that \(4 \mid a^2 - b^2 \) if and only if \(a \) and \(b \) are of the same parity.

Discussion 1. This is a biconditional statement \(p \iff q \) with \(p \) being “\(4 \mid a^2 - b^2 \)” and \(q \) being “\(a \) and \(b \) have the same parity”. Thus, we have two statements to prove:

\[
p \Rightarrow q: \text{ “If } 4 \mid a^2 - b^2, \text{ then } a \text{ and } b \text{ have the same parity.” For this statement, will instead prove the contrapositive statement } \neg q \Rightarrow \neg p \text{ given by “If } a \text{ and } b \text{ have opposite parity, then } 4 \nmid a^2 - b^2."
\]

\[
q \Rightarrow p: \text{ “If } a \text{ and } b \text{ have the same parity, then } 4 \mid a^2 - b^2. \text{ This can be proven directly.}
\]

What we know:

\[
\begin{align*}
&\cdot \text{ For } \neg q \Rightarrow \neg p, \text{ we know that } a \text{ and } b \text{ have opposite parity. Thus, } a \text{ is odd and } b \text{ is even or } a \text{ is even and } b \text{ is odd. Since the statement is symmetric in } a \text{ and } b, \text{ we only need a proof for one of the cases. So, we will assume that } a \text{ is odd and } b \text{ is even.} \\
&\cdot \text{ For } q \Rightarrow p, \text{ we know that } a \text{ and } b \text{ have the same parity. Thus, they are both even or both odd. We will proceed with a proof by cases.}
\end{align*}
\]

What we want:

\[
\begin{align*}
&\cdot \text{ For } \neg q \Rightarrow \neg p, \text{ we wish to conclude that } 4 \nmid a^2 - b^2. \text{ Thus, if we can write } a^2 - b^2 \text{ as one of the three possibilities: } 4x + 1, 4x + 2, \text{ or } 4x + 3 \text{ for some } x \in \mathbb{Z}, \text{ then it is not divisible by 4}. \\
&\cdot \text{ For } q \Rightarrow p, \text{ we wish to conclude that } 4 \mid a^2 - b^2. \text{ Thus, we want to write } a^2 - b^2 \text{ as } 4x \text{ for some } x \in \mathbb{Z}.
\end{align*}
\]

Proof 1. To prove this biconditional statement, we will prove the two conditional statements “If \(4 \mid a^2 - b^2 \), then \(a \) and \(b \) have the same parity” and “If \(a \) and \(b \) have the same parity, then \(4 \mid a^2 - b^2 \).”

For the first conditional statement, we will instead prove the contrapositive: “If \(a \) and \(b \) have opposite parity, then \(4 \nmid a^2 - b^2 \).” So, if \(a \) and \(b \) have opposite parity, then \(a \) is odd and \(b \) is even or \(a \) is even and \(b \) is odd. By the symmetry of the statement we wish to prove, we can consider only the first case; the second case will be almost identical. Thus, we assume that \(a \) is odd and \(b \) is even. So, there exist integers \(k_1, k_2 \in \mathbb{Z} \) such that \(a = 2k_1 + 1 \) and \(b = 2k_2 \). Thus,

\[
a^2 - b^2 = (2k_1 + 1)^2 - (2k_2)^2 = (4k_1^2 + 4k_1 + 1) - 4k_2^2 = 4k_1^2 - 4k_2^2 + 4k_1 + 1 = 4(k_1^2 - k_2^2 + k_1) + 1.
\]

Since \(k_1, k_2 \in \mathbb{Z} \), then \(k_1^2 - k_2^2 + k_1 \in \mathbb{Z} \). So, since \(a^2 - b^2 = 4(k_1^2 - k_2^2 + k_1) + 1 \), then \(4 \nmid a^2 - b^2 \). Thus, the contrapositive is true and the original statement “If \(4 \mid a^2 - b^2 \), then \(a \) and \(b \) have the same parity” is a true statement.
For the second conditional statement, we assume that a and b have the same parity. Thus, a and b are even or a and b are odd, giving us two cases. In the first case, a and b are even, so there exist integers $k_1, k_2 \in \mathbb{Z}$ such that $a = 2k_1$ and $b = 2k_2$. Thus,

$$a^2 - b^2 = (2k_1)^2 - (2k_2)^2 = 4k_1^2 - 4k_2^2 = 4(k_1^2 - k_2^2).$$

Since $k_1, k_2 \in \mathbb{Z}$, then $k_1^2 - k_2^2 \in \mathbb{Z}$. Since $a^2 - b^2 = 4(k_1^2 - k_2^2)$, then $4 \mid a^2 - b^2$. For the second case, assume that both a and b are odd. Thus, there exist integers $k_1, k_2 \in \mathbb{Z}$ such that $a = 2k_1 + 1$ and $b = 2k_2 + 1$. Thus,

$$a^2 - b^2 = (2k_1 + 1)^2 + (2k_2 + 1)^2 =$$

$$(4k_1^2 + 4k_1 + 1) - (4k_2^2 + 4k_2 + 1) = 4(k_1^2 - k_2^2 + k_1 - k_2).$$

Since $k_1, k_2 \in \mathbb{Z}$, then $k_1^2 - k_2^2 + k_1 - k_2 \in \mathbb{Z}$. Since $a^2 - b^2 = 4(k_1^2 - k_2^2 + k_1 - k_2)$, then $4 \mid a^2 - b^2$. Since, in either case, $4 \mid a^2 - b^2$, then our conditional statement is true.

Since we have proven both conditional statements, our biconditional statement “$4 \mid a^2 - b^2$ if and only if a and b have the same parity” is true.

□

Question 2.

(a) Let $a \in \mathbb{Z}$. Show that $3 \mid a$ if and only if $3 \mid a^2$.

(b) Use (a) to show that $\sqrt{3}$ is irrational.

Discussion 2a. This is a biconditional statement $p \leftrightarrow q$ with p being “$3 \mid a$” and q being “$3 \mid a^2$.” Thus, we will break this up into its two conditional statements:

- $p \Rightarrow q$: “If $3 \mid a$, then $3 \mid a^2$. This will be a direct proof.

- $q \Rightarrow p$: “If $3 \mid a^2$, then $3 \mid a$.” We will instead prove the contrapositive statement $\neg p \Rightarrow \neg q$ given by “If $3 \nmid a$, then $3 \nmid a^2$.”

What we know:

- For $p \Rightarrow q$, we will assume that $3 \mid a$. Thus, there exists a $k \in \mathbb{Z}$ such that $a = 3k$.

- For $\neg p \Rightarrow \neg q$, we will assume that $3 \nmid a$. Thus, there exists a $k \in \mathbb{Z}$ such that $a = 3k + 1$ or $a = 3k + 2$. This will give us two cases to consider.

What we want:

- For $p \Rightarrow q$, we will need to conclude that $3 \mid a^2$. Thus, we will want to show that $a^2 = 3x$ for some $x \in \mathbb{Z}$.

- For $\neg p \Rightarrow \neg q$, we will need to conclude that $3 \nmid a^2$. Thus, we will want to show that, for some $x \in \mathbb{Z}$, $a^2 = 3x + 1$ or $a^2 = 3x + 2$.

2
Proof 2a. To prove this biconditional statement, we will prove the two conditional statements: “If $3 \mid a$, then $3 \mid a^2$” and “If $3 \mid a^2$, then $3 \mid a$.”

To prove the first conditional statement, we assume that $3 \mid a$. Thus, $a = 3k$ for some $k \in \mathbb{Z}$. Thus,

$$a^2 = (3k)^2 = 9k^2 = 3(3k^2).$$

Since $k \in \mathbb{Z}$, then $3k^2 \in \mathbb{Z}$. Since $a^2 = 3(3k^2)$, then we can conclude that $3 \mid a^2$, as desired.

To prove the second conditional statement, we will instead prove its contrapositive: “If $3 \nmid a$, then $3 \nmid a^2$.” Since $3 \nmid a$, then for some $k \in \mathbb{Z}$, we can write a as $a = 3k + 1$ or $a = 3k + 2$, giving us two cases. In the first case, $a = 3k + 1$ and thus

$$a^2 = (3k + 1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1.$$

Since $k \in \mathbb{Z}$, then $3k^2 + 2k \in \mathbb{Z}$. Since $a^2 = 3(3k^2 + 2k) + 1$, then $3 \nmid a^2$, as desired. For the second case, $a = 3k + 2$. Thus,

$$a^2 = (3k + 2)^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1.$$

Since $k \in \mathbb{Z}$, then $3k^2 + 4k + 1 \in \mathbb{Z}$. Since $a^2 = 3(3k^2 + 4k + 1) + 1$, we can conclude that $3 \nmid a^2$, as desired. In either case, we conclude that $3 \nmid a^2$. So, the contrapositive statement is true and, thus, our original conditional statement “If $3 \mid a^2$, then $3 \mid a$” is also true.

Since we have proven both conditional statements, the biconditional statement “$3 \mid a$ if and only if $3 \mid a^2$” is true.

\[\square \]

Discussion 2b. This proof will proceed in a similar fashion to the proof that $\sqrt{2}$ is irrational. Thus, this will be a proof by contradiction, where we assume that $\sqrt{3}$ is rational and can thus be written as $\frac{p}{q}$ in lowest term. Then, we will ultimately arrive at a contradiction by showing that both p and q are divisible by 3. We will use one direction of the above biconditional twice throughout our proof: “If $3 \mid a^2$, then $3 \mid a$.”

Proof 2b. Assume, to the contrary, that $\sqrt{3}$ is rational. Thus, we can write

$$\sqrt{3} = \frac{p}{q},$$

with $p, q \in \mathbb{Z}$, $q \neq 0$, and p and q have no common divisors. Squaring both sides of our equation, we obtain

$$3 = \frac{p^2}{q^2}$$

and, cross-multiplying, we obtain $3q^2 = p^2$. Thus, $3 \mid p^2$. Our previous proof shows us that if $3 \mid p^2$, then $3 \mid p$. Thus, we can write $p = 3r$ for some $r \in \mathbb{Z}$. Substituting, we obtain

$$3q^2 = (3r)^2 = 9r^2,$$

which is equivalent to $q^2 = 3r^2$. Thus, $3 \mid q^2$ and, by our previous proof, $3 \mid q$. Thus, $3 \mid p$ and $3 \mid q$, contradicting the fact that p and q have no common divisors. Thus, our initial assumption that $\sqrt{3}$ is rational is false and thus $\sqrt{3}$ is irrational.

\[\square \]
Question 3. Let \(a, b \in \mathbb{R} \). Show that if \(a + b \) is rational, then \(a \) is irrational or \(b \) is rational.

Discussion 3. Our statement is the conditional statement \(p \Rightarrow q \) with \(p \) being “\(a + b \) is rational” and \(q \) being “\(a \) is irrational or \(b \) is rational.” We will instead prove the contrapositive statement \(\neg q \Rightarrow \neg p \). Notice that, to compute \(\neg q \), we must use DeMorgan’s Logic Law, which gives us that \(\neg q \) is “\(a \) is rational and \(b \) is irrational.” Thus, we will prove the contrapositive \(\neg q \Rightarrow \neg p \) given by “If \(a \) is rational and \(b \) is irrational, then \(a + b \) is irrational.

What we know: \(a \) is rational and \(b \) is irrational.

What we want: \(a + b \) is irrational. Since this is a negative statement, we will use proof by contradiction. Thus, we will assume that \(a + b \) is rational and arrive at a contradiction.

Proof 3. To prove our statement, we will instead prove its contrapositive: “If \(a \) is rational and \(b \) is irrational, then \(a + b \) is irrational.” Assume, to the contrary, that \(a + b \) is rational. Then, since \(a \) is rational, \(-a \) is also rational. Since the sum of two rational numbers is rational, then \((a + b) - a = b \) is also rational. This contradicts, however, that \(b \) is irrational. Thus, our initial assumption that \(a + b \) is rational is false, and thus \(a + b \) is irrational. So, we proven the contrapositive to be true and thus the original statement “If \(a + b \) is rational, then \(a \) is irrational or \(b \) is rational” is also true.

\(\square \)