
Chapter 4

Sets of Real Numbers

4.1 The Integers Z and their Properties

In our previous discussions about sets and functions, the set of integers Z served
as a key example. Its ubiquitousness comes from the fact that integers and their
properties are well-known to mathematicians and non-mathematicians. In this
section, we will investigate in more detail what aspects of integer arithmetic
make it so useful.

4.1.1 Arithmetic Properties of Z
Recall that as a set, the integers Z are all whole numbers, positive, negative,
and zero:

Z = {...,−3,−2,−1, 0, 1, 2, 3, . . .}.

The true power of the integers, though, comes from its arithmetic structure. In
particular, Z enjoys the following obvious, yet important, algebraic properties:

· Closed under Addition: If m,n ∈ Z, then m + n ∈ Z. In other words, if
m and n are integers, then their sum m+ n is also an integer.

· Closed under Additive Inverses: Ifm ∈ Z, then there exists another integer
(namely, −m ∈ Z) such that m+ (−m) = 0.

· Closed under Multiplication: If m,n ∈ Z, then m · n ∈ Z. In other words,
if m and n are integers, then their product m · n is also an integer.

· Distributive Property: If m,n, l ∈ Z, then

m · (n+ l) = m · n+m · l.

In other words, the two operations of multiplication and addition behave
nicely together.

The above properties of Z, as obvious as they are, indicate that the algebraic
structure of Z is particularly nice. In fact, these properties, along with other
technical ones, make the integers Z into what algebraists call a ring.

Notice that we did not include the property “Closed Under Multiplicative
Inverses.” The reason for this is simply because Z fails to have this property.
In other words, if m ∈ Z and m 6= 0, we can ask if there exists an integer
m−1 ∈ Z such that m ·m−1 = 1. This rarely happens. For example, 3 ∈ Z has
no multiplicative inverse since the only real number that can multiply with 3
to produce 1 is 1

3 6∈ Z, which is not an integer. In fact, the only integers whose
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multiplicative inverses are also integers are 1 and −1. Thus, division is rare in
the ring of integers; however, we will see that there is still a way to speak of
divisibility of integers.

4.1.2 Divisibility of Integers

Integers can be broken up into two disjoint subsets: the set of even integers and
the set of odd integers. More specifically, we say that a number n ∈ Z is even
if there exists an integer k ∈ Z such that n = 2k. Key to this definition is that
k is indeed a whole number. An integer m which is not even is called odd and
can be written as m = 2k + 1 for some k ∈ Z.

In previous sections, we proved some simple propositions about even and
odd numbers and saw that they boiled down to being able to write a number
in a certain form. Here, we wish to generalize the concept of an even number
to the broader concept of divisibility.

Another way to phrase the definition of an even number is to say that n is
divisible by 2; equivalently, we can say that 2 divides n. In general, we can say
that an integer m divides n if there exists an integer k ∈ Z such that n = mk.
If m divides n, then this frequently notated by

m|n.

Since the definition of divisibility is in the form of a “there exists” statement,
we will be using much of the logic and previously developed techniques in our
proofs.

Below are some examples of divisibility statements and associated proofs or
counterexamples.

· We previously proved that n is even if and only if n2 is even. We can
re-write this in terms of divisibility as “2|n if and only if 2|n2.”

· We previous proved that if m ·n is odd, then m and n are both odd. Since
a whole number is odd if and only if it is not even, we can use the does
not divide symbol - to re-write our statement as “If 2 - m · n, then 2 - n
and 2 - m.”

· Consider the statement

“if a | b and b | c, then a | c.”

We can prove this statement rather easily. Since a | b and b | c, then there
exists integers k1, k2 ∈ Z such that b = k1a and c = k2b. Substituting, we
get that

c = k2b = k2(k1a) = (k2 · k1)a.

Since k1, k2 ∈ Z, their product k2k1 is also an integer. Thus, since c =
(k2k1)a, then c is written as a multiple of a and thus a | c.

· Consider the statement

“if a | c and b | d, then ab | cd.”

This statement is true. Since a | c and b | d, there exist integers k1, k2 ∈ Z
such that c = k1a and d = k2b. Thus,

cd = (k1a)(k2b) = (k1k2)ab.

Since k1, k2 ∈ Z, then k1k2 ∈ Z. Thus, ab | cd.
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· Consider the statement

“If a | b and a | c, then a | bx+ cy for any integers x, y ∈ Z.”

We will provide a proof for this statement. Sine a | b and a | c, there exists
integers k1, k2 ∈ Z such that b = k1a and c = k2a. Thus,

bx+ cy = (k1a)x+ (k2a)y = a(k1x+ k2y).

Since x, y, k1, k2 ∈ Z, then k1x+k2y ∈ Z and thus a | bx+ cy. Notice that
this statement includes the statement “If a | b and a | c, then a | (b+ c)”
if we let x = y = 1.

· Consider the statement

“if a | b or a | c, then a | bc.”

We can also prove this statement rather easily. First, we can assume,
without loss of generality, that a | b (since the case a | c is almost identical).
Then, b = ka for some k ∈ Z. Thus, bc = kac = (kc)a. Since k, c ∈ Z,
then kc ∈ Z and thus a | bc.

· We can investigate the converse of the above statement as well:

“If a | bc, then a | b or a | c.”

We provide a counter-example showing that the above statement is not
generally true. Consider a = 4, b = 2, and c = 6. Then, a | bc is 4 | 2 · 6 =
12, a true statement. However, neither 4 | 2 nor 4 | 6 is true. The above
statement is true under certain conditions on a (namely, when a is prime),
but this proof is slightly out of the scope of these notes.

4.1.3 Divisibility Proofs

The divisibility proofs above were fairly straightforward because they simply
used the definition of divisibility. For all of them, when we knew that m | n,
then we always wrote “there exists a k ∈ Z such that n = mk.” When we
were asked to prove that m | n, then our job was to find some integer x such
that m = nx, where usually x was some combination of the previous constants.
Furthermore, we always included a sentence that showed that x was indeed an
integers by invoking the fact that Z is closed under addition and multiplication.

Here, we will investigate some more complicated divisibility proofs that re-
quire some key observations. To begin, notice that we had previously mentioned
that an integer m is odd if it is not even or, equivalently, that m = 2k + 1 for
some k ∈ Z. We can make similar statements in general. If n | m, then m = nk
for some k ∈ Z; however, can we say anything about what happens when n - m
(when n does not divide m)?

To answer the above question, we will take the example of 3 - m. Since
3 - m, we cannot write m as an integer multiple of 3. Written in a slightly odd
way, we can say that it is not true that m = 3k+ 0 for any k ∈ Z. If we replace
the 0 with any other multiple of 3, the the above statement is still not true. To
make it true, we can simply replace 0 with any number that is not divisible by
3. Thus, if 3 - m, then either m = 3k + 1 or m = 3k + 2. Notice that replacing
the 1 or 2 in the above statements with another number not divisible by 3 will
reduce to one of the above two cases.
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In general, if n - m, then we can write m in one of the following firms:

m = nk + 1

m = nk + 2

...

m = nk + (n− 1)

for some k ∈ Z. In the proof-writing context, this means that if we know that
n - m, then we can use a proof by cases. In fact, there will be a total of n − 1
cases. We give an example of such a proof below.

Proposition. Let a ∈ Z. If 3 - a2 − 1, then 3 | a.

Discussion. This proposition asks us to prove “If 3 - a2− 1, then 3 | a.” Thus,
we have a conditional statement p ⇒ q with p being “3 - a2 − 1” and q being
“3 | a.” We will instead prove its contrapositive ¬q ⇒ ¬p given by “If 3 - a, then
3 | a2−1.” Of course, the contrapositive also has a “does not divide” statement,
but 3 - a is easier to work with than 3 - a2 − 1.

What we know: 3 - a. Thus, by the above arguments, we know that for some
k ∈ Z, a = 3k + 1 or a = 3k + 2.

What we want: 3 | a2 − 1. Thus, we need to write a2 − 1 as a2 − 1 = 3x for
some x ∈ Z.

What we’ll do: We will use the following two cases: a = 3k+ 1 or a = 3k+ 2.
In both cases, we will use algebra to write a2− 1 as 3x for some x ∈ Z. We will
also be sure to note that our x is indeed an integer using properties of Z.

Proof. We will instead prove the contrapositive of our statement: “If 3 - a,
then 3 | a2 − 1.”

Since 3 - a, then for some k ∈ Z, we know that a = 3k + 1 or a = 3k + 2,
leaving us with two cases. In the first case, a = 3k + 1. Thus,

a2 − 1 = (3k + 1)2 − 1 = (9k2 + 6k + 1)− 1 =

9k2 + 6k = 3(3k2 + 2k).

Since k ∈ Z, then 3k2 + 2k ∈ Z. Thus, a2 − 1 = 3(3k2 + 2k) and 3 | a2 − 1, as
desired.

In the second case, a = 3k + 2. Thus,

a2 − 1 = (3k + 2)2 − 1 = (9k2 + 12k + 4)− 1 =

9k2 + 12k + 3 = 3(3k2 + 4k + 1).

Since k ∈ Z, then 3k2+4k+1 ∈ Z. Thus, a2−1 = 3(3k2+4k+1) and 3 | a2−1,
as desired.

In either case, we conclude that 3 | a2 − 1. Thus, we have proven the
contrapositive statement and the original statement “If 3 - a2− 1, then 3 | a” is
true.

�
It is important to note that the converse of the above observation is true as

well. That is, if we are trying to prove, for example, that 3 - m, and we are
able to write m = 3x+ 1 or m = 3x+ 2 for some x ∈ Z, then we are allowed to
conclude that, in fact 3 - m.
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4.2 Rational and Irrational Numbers

When studying the integers Z, we noted that, although it has all of the important
algebraic structure that makes it a ring (closed under addition, multiplication,
and additive inverses), it does not have the property that it is closed under
multiplicative inverses. In other words, division in the set of integers is not a
possibility. In fact, we noted that if you consider 3 ∈ Z, that there is no other
integer a such that 3 · a = 1.

4.2.1 The Rationals as a Field

In this section, we will investigate Q, the set of rational numbers. Recall that
the rationals are given in set-builder notation by

Q =

{
p

q

∣∣∣∣ p, q ∈ Z, q 6= 0

}
with the added proviso that two rationals p1

q1
and p2

q2
are equal if p1q2 = p2q1.

If we re-consider our above example, this time viewing 3 as a rational number,
then we can note that there does indeed indeed exist a multiplicative inverse,
1
3 ∈ Q, such that 3 · 13 = 1. Thus, Q has a more robust algebraic structure
than Z and makes it one of the most important subsets of real numbers. These
algebraic properties that we articulate below, along with some technical ones,
give the rationals Q the structure of a field.

· Closed under Addition: If
p1
q1
,
p2
q2
∈ Q, then their sum

p1
q1

+
p2
q2
∈ Q. To

see this, notice that addition is given by

p1
q1

+
p2
q2

=
p1q2 + p2q1

q1q2
,

which is a rational number since its numerator and denominator are inte-
gers with its denominator non-zero.

· Closed under Additive Inverses: If
p

q
∈ Q, then there exists another ratio-

nals (namely
−p
q
∈ Q) such that

p

q
+
−p
q

= 0.

· Closed under Multiplication: If
p1
q1
,
p2
q2
∈ Q, then their product

p1
q1
·p2
q2
∈ Q.

To see this, notice that multiplication is given by

p1
q1
· p2
q2

=
p1p2
q1q2

,

which is a rational number since its numerator and denominator are inte-
gers with its denominator non-zero.

· Closed under Multiplicative Inverses: If
p

q
∈ Q is a non-zero rational

number, then there exists another rational number (namely
q

p
∈ Q) such

that
p

q
· q
p

= 1.
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Notice that
q

p
is indeed a rational number since its numerator and denom-

inator are integers and its denominator p is non-zero (since the original
rational number was non-zero).

If we consider the rationals Q as a subset of the real numbers R and imagine
where on the real line the set of rationals sits, it seems that they permeate
almost all of R. Towards this perspective, we show below that between any two
distinct rational numbers, there exists another rational number.

Proposition. Let a, b ∈ Q be distinct rational numbers with a < b. There
exists another rational number x ∈ Q such that

a < x < b.

Discussion.

What we want: To show that there exists an x ∈ Q with the property that

a < x < b.

What we know: a, b ∈ Q are distinct rational numbers and a < b. Thus, since Q
is a field, we can add, subtract, multiply, or divide and obtain another rational
number (if we divide, it cannot be by zero).

What we’ll do: Since this is an existence proof, we will need to give the actual
x that has the property a < x < b. If a and b are rationals, then taking the
average of the two numbers will yield another rational (since Q is closed under
addition and multiplication). Thus, we will let

x =
a+ b

2
.

We must, of course, prove that x is indeed rational. We must further show that
the desired inequality a < x < b holds by showing that a < x and that x < b.

Proof. Given two distinct rationals a, b ∈ Q, let

x =
a+ b

2
.

Notice that, since a, b ∈ Q, then a+ b ∈ Q since the rationals are closed under

addition. Furthermore, x = (a+ b) · 1
2

, and since a+ b, 12 ∈ Q, x is also rational

since Q is closed under multiplication.
Next, we show that a < x < b. Since a < b, we can add a to both sides to

obtain a+ a < a+ b, which is equivalent to 2a < a+ b. Thus,

a =
2a

2
<
a+ b

2
= x.

Similarly, since a < b, we can add b to both sides to obtain a+ b < b+ b, which
is equivalent to a+ b < 2b. Thus,

x =
a+ b

2
<

2b

2
= b.

Thus, a < x and x < b, giving us a < x < b, as desired.

Thus, x =
a+ b

2
is a rational number such that a < x < b.

�
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Notice that, if a < b are rationals, then the above propositions guarantees
the existence of a rational x such that a < x < b. If we apply the proposition
again to the two rationals a < x, then we obtain another rational y such that
a < y < x < b. Continuing this process, we can building infinitely many
rationals between any two distinct rationals. Intuitively, this means that the
rationals are present in essentially all portions of the real line.

4.2.2 Irrational Numbers

Also important in the study of rational numbers are those real numbers that
are not rational, called the irrational numbers. While there is no established
convention for the set of irrational numbers, the notation

R−Q

is utilized fairly frequently.
In beginning the study of irrational numbers, it is not clear that an irrational

even exists. We have heard multiple times in high school that important num-
bers like

√
2, π, and e are irrational, but most students were not offered proofs.

Below, we will give a proof that
√

2 is an irrational number. Key to this proof
is the fact that any rational number can be written in lowest terms. In other

words, if
p

q
∈ Q is rational, then, we can choose p and q to have no common

divisors.
Since the set of irrational numbers are defined in terms of a negative state-

ment (they are not rational), many statements involving rational numbers are
easily proven using proof by contradiction, which we utilized in the Set Theory
chapter when we proved a statement about complements of sets.

Recall that, in a proof by contradiction, if we wish to prove a statement p,
then we assume its negation ¬p. With this assumption, we then proceed logically
and arrive at a statement that contradicts some other established mathematical
fact. Since this cannot logically occur, our initial assumption ¬p must be false
and thus p is true. Here, our p will be the statement that “

√
2 is an irrational

number”. Thus, its negation ¬p is given by “
√

2 is a rational number” and thus
we can use known facts about rationals to arrive at a contradiction.

Theorem.
√

2 is an irrational number.

Discussion.

What we want: We wish to show that
√

2 is an irrational number. Thus, we
will use a proof by contradiction and assume that

√
2 is rational.

What we’ll do: Since we are assuming
√

2 is a rational number, then we can
write

√
2 as a fraction p

q , which is written in lowest terms. We will eventually

contradict the fact that p
q is in lowest terms by showing that they share a

common divisor of two (since they will both be even). In doing so, we will use
the previously proven theorem that “n2 is even if and only if n is even.”

Proof. Assume, to the contrary, that
√

2 is rational. Thus, we may write

√
2 =

p

q
,

where p and q have no common divisors. Squaring both sides, we obtain

2 =
p2

q2
,
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which is equivalent to 2q2 = p2. Notice that p2 is even since it is written as a
product of 2 and the integer q2. Since p2 = p ·p is even, then p is even. Thus, we
can write p = 2r for some r ∈ Z. Substituting, we get 2q2 = p2 = (2r)2 = 4r2,
which is equivalent to q2 = 2r2. Thus, q2 is even, as it is the product of 2 and
the integer q2. As above, since q2 = q · q is even, then q is even.

Thus, we have shown that both p and q are even, and so both p and q
have a common divisor of 2, contradicting the assumption that p and q have no
common divisors.

So, our initial assumption that
√

2 is rational must be false, and we conclude
that

√
2 is irrational, as desired.

�
Above we have proven that

√
2 is an irrational number and thus non-rational

real numbers exist. In the same way, one can prove that any
√
p is an irrational

number for any prime number p. In fact, arguing a little further, one can show
that

√
m is rational if and only if m is a perfect square. The proof that e and

π are irrational are a bit more complicated and out of the scope of these notes.
We notice that, as important as the set of irrationals are, they do not enjoy

the same algebraic properties as Q. One major algebraic deficiency is the simple
fact that 0 and 1, the additive and multiplicative identities, are not irrational.
Furthermore, the irrationals are also deficient in the following ways.

· Irrationals are Not Closed under Addition: For example,
√

2 is irrational,
and so is −

√
2 (we will show this later). However,

√
2 +−

√
2 = 0, which

is not irrational.

· Irrationals are Not Closed under Multiplication: For example,
√

2 is irra-
tional, but

√
2 ·
√

2 = 2 is not irrational.

Even though irrationals lack many nice algebraic properties, we can say
something about the structure of this set. Below we give an example of such a
proof. Again, since we are dealing with irrationals, proof by contradiction is an
excellent option.

Propsoition. Let a be an irrational number. Then, −a is irrational and 1
a is

irrational.

Discussion. This proposition actually has two statements: −a is irrational and
1
a is irrational. Since we wish to conclude two negative statements, it is natural
to use proof by contradiction on both.

What we know: a is irrational. Thus, if we ever show that we can write a as a
rational number, we know that we have arrived at a contradiction.

What we want:

· −a is irrational. Thus, we will assume that −a is rational and arrive a
contradiction.

· 1
a is irrational. Thus, we will assume that 1

a is rational and arrive at a
contradiction.

What we’ll do:

· Since we assumed that −a is rational, we will write is as p1

q1
and contradict

the fact that a is irrational.

· Since we assumed that
1

a
is rational, we can write it as p2

q2
and contradict

the fact that a is irrational.
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Proof. First, we will prove that −a is irrational. Assume, to the contrary, that
−a is rational. Thus,

−a =
p1
q1
,

where p1, q1 ∈ Z with q 6= 0. Multiplying by −1, we have

a = −(−a) = −p1
q1

=
−p1
q1

,

and we have thus written a as a fraction of two whole numbers with the denom-
inator q1 6= 0. Thus, a is rational, a contradiction. Thus, our initial assumption
that −a is rational is false and thus −a is irrational.

Next, we will prove that 1
a is irrational. First, notice that since a is irrational,

then a 6= 0 because 0 is rational. Thus, 1
a is indeed a real number and not equal

to 0. Assume, to the contrary, that 1
a is rational. Thus,

1

a
=
p2
q2
,

where p2, q2 ∈ Z, q2 6= 0, and further p2 6= 0 since 1
a 6= 0. Notice that

a =
1

1/a
=

1

p2/q2
=
q2
p2
.

Thus, we have written a as a fraction of two integers with its denominator p2
being non-zero; thus, a is rational, a contradiction. So, our initial assumption
that 1

a is rational is false and thus 1
a is irrational.

�
Proposition. Let a ∈ Q be a non-zero rational and b be an irrational number.
Then a · b is irrational.

Discussion.

What we know: a is a non-zero rational number and b is an irrational number.
Since a is rational, we can use the nice field properties of Q when we are dealing
with a.

What we want: a · b is irrational. Since this is a negative statement, we will use
proof by contradiction. Thus, we will assume that a · b is rational and arrive at
a contradiction.

What we’ll do: We know that 0 6= a ∈ Q and thus a multiplicative inverse 1
a

exists and is rational. Since we assumed that a · b is rational, then b = 1
a · (a · b)

is a product of rationals and thus rational, a contradiction.

Proof. Assume, to the contrary, that a · b is rational. Since a is rational and
non-zero, its multiplicative inverse 1

a exists and is a rational number. Since 1
a

and a · b are rational numbers, their product is also rational. Thus,

1

a
· (a · b) =

1

a
· a · b = b

is rational, contradicting the irrationality of b. So, our initial assumption that
a · b is rational is false and thus a · b is irrational, as desired.

�
Notice that, in fact, this most recent proposition is actually a generalization

of the previous proposition stating that “if a is irrational, then −a is irrational.”
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