Math 432 - Real Analysis II Solutions Homework due February 4

Question 1. Recall that a function g is called bounded on S if there exists a positive number M such that $|f(x)|<M$ for all $x \in S$. Show that if each f_{n} is a bounded function that uniformly converges to f on S, then f is also bounded on S.

Solution 1. Since $f_{n} \rightarrow f$ uniformly, there exists an N such that for all $n>N$ and all $x \in S,\left|f_{n}(x)-f(x)\right|<$ 1. (Here, we set $\varepsilon=1$, but any positive ε would do). Consider $n=N+1$. Since each f_{n} is bounded, there exists some $M>0$ such that $-M<f_{N+1}(x)<M$ for all $x \in S$. Since $\left|f_{N+1}(x)-f(x)\right|<1$, we know that $f_{N+1}(x)-1<f(x)<f_{N+1}(x)+1$ for all $x \in S$. In particular, we have that

$$
-M-1<f_{N+1}(x)-1<f(x)<f_{N+1}(x)+1<M+1
$$

Thus,

$$
|f(x)|<M
$$

for all $x \in S$. Thus, $f(x)$ is bounded on S.

Question 2. Consider the function

$$
f_{n}(x)=\frac{n+\cos x}{2 n+\sin ^{2} x}
$$

(a) Compute the pointwise limit $f(x)$ for all $x \in \mathbb{R}$.
(b) Show that f_{n} converges to f uniformly on \mathbb{R}.
(c) Compute

$$
\lim _{n \rightarrow \infty} \int_{2}^{7} f_{n}(x) d x
$$

Solution 2.

(a) Notice that

$$
f_{n}(x)=\frac{n+\cos x}{2 n+\sin ^{2} x}=\frac{1+\frac{\cos x}{n}}{2+\frac{\sin ^{2} x}{n}} .
$$

As $n \rightarrow \infty$, the fractions in the numerator and denominator approach 0 (by the Squeeze Theorem, for example). Thus, f_{n} converges pointwise to $f(x)=1 / 2$, the constant function.
(b) Let $\varepsilon>0$. Notice that

$$
f_{n}(x)-f(x)=\frac{n+\cos x}{2 n+\sin ^{2} x}-\frac{1}{2}=\frac{2 \cos x+\sin ^{2} x}{2\left(2 n+\sin ^{2} x\right)}
$$

For all values of x, we have that $\left|2 \cos x+\sin ^{2} x\right|<3$ and that $2\left(2 n+\sin ^{2} x\right) \geq 4 n$. Thus, we have that

$$
\left|f_{n}(x)-f(x)\right|<\frac{3}{4 n}
$$

Thus, choose $N=\frac{3}{4 \varepsilon}$. Thus, for all $n>N=\frac{3}{4 \varepsilon}$, we have that $\frac{3}{4 n}<\varepsilon$. Thus, for all $n>N$ and all $x \in \mathbb{R}$, we have that

$$
\left|f_{n}(x)-f(x)\right|<\frac{3}{4 n}<\varepsilon
$$

So, $f_{n}(x) \rightarrow f(x)$ uniformly.
(c) We will not integrate $f_{n}(x)$ on the interval $[2,7]$. Instead, since $f_{n} \rightarrow f$ uniformly on \mathbb{R} (and therefore on $[2,7]$, we have that

$$
\lim _{n \rightarrow \infty} \int_{2}^{7} f_{n}(x) d x=\int_{2}^{7} \lim _{n \rightarrow \infty} f_{n}(x) d x=\int_{2}^{7} f(x) d x=\int_{2}^{7} \frac{1}{2} d x=\frac{5}{2}
$$

Question 3. Consider the power series $\sum_{k=0}^{\infty} a_{k} x^{k}$. Show that if $\sum_{k=0}^{\infty} a_{k}$ converges absolutely as a series, then the power series $\sum_{k=0}^{\infty} a_{k} x^{k}$ converges uniformly on $[-1.1]$.

Solution 3. Since $\sum_{k=0}^{\infty} a_{k}$ converges absolutely, we have that $\sum_{k=0}^{\infty}\left|a_{k}\right|<\infty$. For all $x \in[-1,1]$, we have that $|x| \leq 1$ and thus $|x|^{k} \leq 1$. So, $\left|a_{k} x^{k}\right|=\left|a_{k}\right| \cdot|x|^{k} \leq\left|a_{k}\right|$ for all $x \in[-1,1]$. Since $\sum_{k=0}^{\infty}\left|a_{k}\right|<\infty$ then $\sum_{k=0}^{\infty} a_{k} x^{k}$ converges uniformly on $[-1,1]$ by the Weierstrass M-test.

Question 4. Show that $\sum_{k=1}^{\infty} \frac{\cos k x}{k^{2}}$ converges uniformly on \mathbb{R} to a continuous function.
Solution 4. Since $|\cos k x| \leq 1$ for all $x \in \mathbb{R}$, we have that

$$
\left|\frac{\cos k x}{k^{2}}\right| \leq \frac{1}{k^{2}}
$$

Thus, by the Weierstrass M-test, we have that $\sum_{k=1}^{\infty} \frac{\cos k x}{k^{2}}$ converges uniformly. Since each partial sum is the sum of continuous functions, it is continuous. Thus, since the convergence is uniform, the limit is also continuous on all \mathbb{R}.

Question 5.

(a) Let $0<a<1$. Show that the series $\sum_{k=0}^{\infty} x^{k}$ converges uniformly to $1 /(1-x)$ on $[-a, a]$.
(b) Does the series $\sum_{k=0}^{\infty} x^{k}$ converge uniformly on $(-1,1)$?

Solution 5.

(a) We have shown that $\sum_{k=0}^{\infty} x^{k}$ has a domain of convergence $(-1,1)$, on which it converges pointwise to the function $1 /(1-x)$. By a theorem in class, since the radius of convergence is 1 , then for any $0<a<1$, we have that the power series converges uniformly on $[-a, a]$.
(b) No. Our series does not converge uniformly on $(-1,1)$. To see this, consider

$$
\sup \left\{\left|x^{k}\right| \mid x \in(-1,1)\right\}=1
$$

Since $\lim _{k \rightarrow \infty} \sup \left\{\left|x^{k}\right| \mid x \in(-1,1)\right\}=1 \neq 0$.

