
Math 432 - Real Analysis II
Solutions Homework due February 4

Question 1. Recall that a function g is called bounded on S if there exists a positive number M such that
|f(x)| < M for all x ∈ S. Show that if each fn is a bounded function that uniformly converges to f on S,
then f is also bounded on S.

Solution 1. Since fn → f uniformly, there exists an N such that for all n > N and all x ∈ S, |fn(x)−f(x)| <
1. (Here, we set ε = 1, but any positive ε would do). Consider n = N + 1. Since each fn is bounded, there
exists some M > 0 such that −M < fN+1(x) < M for all x ∈ S. Since |fN+1(x)− f(x)| < 1, we know that
fN+1(x)− 1 < f(x) < fN+1(x) + 1 for all x ∈ S. In particular, we have that

−M − 1 < fN+1(x)− 1 < f(x) < fN+1(x) + 1 < M + 1.

Thus,
|f(x)| < M

for all x ∈ S. Thus, f(x) is bounded on S.

Question 2. Consider the function

fn(x) =
n+ cosx

2n+ sin2 x
.

(a) Compute the pointwise limit f(x) for all x ∈ R.

(b) Show that fn converges to f uniformly on R.

(c) Compute

lim
n→∞

∫ 7

2

fn(x) dx.

Solution 2.

(a) Notice that

fn(x) =
n+ cosx

2n+ sin2 x
=

1 + cos x
n

2 + sin2 x
n

.

As n → ∞, the fractions in the numerator and denominator approach 0 (by the Squeeze Theorem, for
example). Thus, fn converges pointwise to f(x) = 1/2, the constant function.

(b) Let ε > 0. Notice that

fn(x)− f(x) =
n+ cosx

2n+ sin2 x
− 1

2
=

2 cosx+ sin2 x

2(2n+ sin2 x)

For all values of x, we have that |2 cosx+ sin2 x| < 3 and that 2(2n+ sin2 x) ≥ 4n. Thus, we have that

|fn(x)− f(x)| < 3

4n
.

Thus, choose N = 3
4ε . Thus, for all n > N = 3

4ε , we have that 3
4n < ε. Thus, for all n > N and all

x ∈ R, we have that

|fn(x)− f(x)| < 3

4n
< ε.

So, fn(x)→ f(x) uniformly.
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(c) We will not integrate fn(x) on the interval [2, 7]. Instead, since fn → f uniformly on R (and therefore
on [2, 7], we have that

lim
n→∞

∫ 7

2

fn(x)dx =

∫ 7

2

lim
n→∞

fn(x) dx =

∫ 7

2

f(x) dx =

∫ 7

2

1

2
dx =

5

2
.

Question 3. Consider the power series

∞∑
k=0

akx
k. Show that if

∞∑
k=0

ak converges absolutely as a series, then

the power series

∞∑
k=0

akx
k converges uniformly on [−1.1].

Solution 3. Since

∞∑
k=0

ak converges absolutely, we have that

∞∑
k=0

|ak| <∞. For all x ∈ [−1, 1], we have that

|x| ≤ 1 and thus |x|k ≤ 1. So, |akxk| = |ak| · |x|k ≤ |ak| for all x ∈ [−1, 1]. Since
∞∑
k=0

|ak| <∞ then

∞∑
k=0

akx
k

converges uniformly on [−1, 1] by the Weierstrass M -test.

Question 4. Show that

∞∑
k=1

cos kx

k2
converges uniformly on R to a continuous function.

Solution 4. Since | cos kx| ≤ 1 for all x ∈ R, we have that∣∣∣∣cos kxk2

∣∣∣∣ ≤ 1

k2
.

Thus, by the Weierstrass M -test, we have that

∞∑
k=1

cos kx

k2
converges uniformly. Since each partial sum is

the sum of continuous functions, it is continuous. Thus, since the convergence is uniform, the limit is also
continuous on all R.

Question 5.

(a) Let 0 < a < 1. Show that the series

∞∑
k=0

xk converges uniformly to 1/(1− x) on [−a, a].

(b) Does the series
∞∑
k=0

xk converge uniformly on (−1, 1)?

Solution 5.

(a) We have shown that

∞∑
k=0

xk has a domain of convergence (−1, 1), on which it converges pointwise to the

function 1/(1− x). By a theorem in class, since the radius of convergence is 1, then for any 0 < a < 1,
we have that the power series converges uniformly on [−a, a].

(b) No. Our series does not converge uniformly on (−1, 1). To see this, consider

sup{|xk| |x ∈ (−1, 1)} = 1.

Since limk→∞ sup{|xk| |x ∈ (−1, 1)} = 1 6= 0.
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