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A B S T R A C T

Motivated by the asset pricing theory with safety-first preference, we introduce and oper-
ationalize a conditional extreme risk (CER) measure to describe expected stock performance
conditional on a small-probability market downturn (black swan). We document a significant
CER premium in the cross-section of expected returns. We also demonstrate that CER explains
the premia to downside beta, coskewness, and cokurtosis. CER provides distinct information
regarding black swan hedging that cannot be captured by co-crash-based tail dependence
measures. As we find that the pricing effect is stronger among black swan hedging stocks,
this distinction helps explain the absence of premium to tail dependence.

1. Introduction

Financial economists have long recognized the importance of extraordinarily adverse market conditions in asset pricing (Roy,
952; Menezes et al., 1980; Rietz, 1988). To risk-averse investors, an asset with declining value in a severely deteriorating market
hould be less valuable, while an asset performing well during rare market downturns (black swans) should be especially desirable.
n other words, whether an asset contributes to small-probability (but potentially large) market calamities or hedges against black
wans indicates its riskiness under conditions of extreme market drops. Conceptually, a straightforward way to express such risk
s to gauge directly the expected payoffs of assets in the worst states of the market. We follow this intuition to introduce a novel
onditional extreme risk (CER) measure that predicts individual stock performance conditional on a potential rare plummet of the
arket. We examine CER’s asset pricing implication, its relations with comoment-based systematic risk measures (downside beta,

oskewness, cokurtosis), and its role in black swan hedging which differentiates it from co-crash-based tail dependence measures.
Our study is motivated by the positive theory of equilibrium asset prices under the safety-first principle. Arzac and Bawa (1977)

evelop a generalized lexicographic form of the safety-first rule introduced by Roy (1952) and Telser (1955). Under this framework,
isk-averse investors’ objective is to maximize expected wealth while constraining the probability of failure (or substantial loss below
critical level). The Arzac–Bawa model shows that the expected return of an asset in the risk-averse safety-first (RASF) world is

xplained by its contribution to the Value-at-Risk (VaR) of the market portfolio associated with an admissible probability 𝛼 (i.e., the
𝛼-quantile of the market return). This RASF factor can be expressed as the expected return of the asset conditional on extreme market
return corresponding to its 𝛼-probability VaR (see the online appendix for details). As such, CER serves as a direct measure for the
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risk factor identified in the RASF model. A high CER indicates that the asset is expected to plummet together with the market, and
a sufficiently low or negative CER implies that the asset’s price would only drop slightly or even rise if the market experiences a
rare crash. Therefore, CERs of individual assets reflect the expected hedge they provide against the market black swans.

A salient feature of the RASF risk factor is that it applies to arbitrary return structures, with beta in the capital asset pricing
model (CAPM) as a special case for normal distribution. In the online appendix, we demonstrate that it also encompasses higher-order
comoment-based coskewness and cokurtosis if the market portfolio is specified in terms of particular distribution characteristics.
Consistent with its theoretical basis, the CER measurement adopts a conditional extreme value approach that has asymptotic
properties suitable for any distribution. Such technique characterizes the behavior of one random variable (e.g., an individual asset
return) given that another random variable (e.g., the market return) is approaching a rare and extraordinarily low level. CER thus
holds the potential to explain the premia to the well-established comoment measures.

CER effectively predicts conditional stock performance when a rare market collapse occurs. In the period from 1931 to 2013,
when the U.S. market experiences the 50 most severe monthly plummets (with average market drop of 11.72% per month), the
lowest CER tertile stocks outperform the highest tertile stocks by 601 basis points (bps) per month on average (and by 865 bps for
the 10 most severe market plummets). This evidence shows that black swan hedging stocks suffer much milder losses relative to
high CER counterparts when market crashes, providing an effective hedge against the market black swans.

We find a significant and positive premium to CER. When large-scale market extreme losses are predicted (as opposed to
crashes that are actually realized) and thus the disaster-avoidance motive is strong, top CER quintile stocks have expected returns
substantially higher than those of the bottom CER quintile. For the top 10 percent months according to the magnitude of market VaR
prediction, the top-minus-bottom quintile difference of expected return is 194.43 bps per month (26.00% per annum with monthly
compounding) on an equal-weighted (EW) base. These high predicted extreme market risk months also include a large proportion of
realized market crashes: 12 out of the 50 most severe market plummets happen in these months. Excluding realized market crashes
boosts the EW CER premium to 335.01 bps per month (48.50% per annum). These results suggest that, when extreme market risk
becomes a major concern and the black swan hedging attribute is especially desirable, investors trade off payoff to avoid the value
of their assets plunging in a severely deteriorated market, and are content to accept a lower expected return in exchange for hedging
market black swans. The high expected returns required to compensate for holding high CER stocks more than offset their price
plunges during realized market crash times, leading to an overall positive CER premium. Such a CER effect also prevails throughout
the full sample period with an EW average CER premium of 44.46 bps per month (5.47% per annum) and 84.30 bps per month
(10.60% per annum) before and after the top 50 realized market crash months are excluded, respectively. These findings are robust
under the value-weighted (VW) scheme, and are not driven by small or low-priced stocks.

CER explains the cross-sectional variation of stock returns in addition to market beta as well as size, book-to-market ratio,
momentum, and liquidity. Alphas and pricing errors from the CAPM, the Fama–French 3-factor model, and the Fama–French-Carhart
4-factor model are greater when CER is higher, implying that these models are insufficient to price equities in the presence of extreme
downside risk. Larger pricing errors are also observed in periods of larger CER premia, suggesting that CER explains part of what
other factors do not.

We further find that CER explains the asset pricing effects of comoment-based systematic risk measures including downside beta,
coskewness and cokurtosis. The positive premia to downside beta and cokurtosis become insignificantly negative and over 80 percent
of the coskewness premium disappears as we control for CER. In contrast, the CER premium remains positive and significant after
downside beta, coskewness, and cokurtosis are controlled. These findings suggest that investors process probabilistic information
not confined to comoments. Emerging as a more comprehensive reflection of risk information, CER has a significant impact on asset
prices over and beyond the comoment effects.

CER differs from the metrics used in the research on systematic tail risk (Kole and Verbeek, 2006; Spitzer, 2006; DiTraglia and
Gerlach, 2013; Chabi-Yo et al., 2015; Van Oordt and Zhou, 2016). A salient commonality among these studies is that they all adopt
the tail dependence method which constructs a co-crash measure to proxy for the case where both the market and the individual
stock suffer from rare losses simultaneously, which is profoundly different from the CER measure that requires only the market to
crash, i.e., CER assesses the riskiness not only when a stock plummets together with the market but also when the stock price
remains stable in rare market crash scenarios (i.e., exhibiting the black swan hedging feature). Conceptually, under the situation
where the market faces an extraordinarily negative state but the stock does not, only CER can deliver relevant information, whereas
tail dependence measures are unable to do so. Such a distinction is critical since the ability to hedge market black swans can be
highly desirable and can constitute the primary concern of investors.

We provide supporting evidence for the importance of CER’s black swan hedging attribute in asset pricing. Using extreme
value copula method, we estimate an asymptotic tail dependence measure based on sufficient co-exceedance return data below low
thresholds (i.e., co-crash) for both the stock and the market, and find that it is positively correlated with CER but cannot account
for the CER premium, suggesting that co-crash risk does not capture the complete riskiness reflected in CER. More importantly, we
find that CER premium is almost twice as large among stocks without valid tail dependence estimates due to the lack of co-crash
data, which is the case where the black swan hedging potential is greater. This implies that, when stock return is more likely to
be asymptotically independent of the market and thus the black swan hedging property tends to be more prominent, investors are
inclined to give up substantial expected compensation to avoid collapsing with the market. Our evidence also provides a hint that
helps explain why existing tail dependence-based studies, which do not adequately capture the black swan hedging effect, generally
fail to report a significantly positive premium to their measures.

Our work complements two strands of research on extreme risk and its pricing. One set of studies examine stock return’s
sensitivity to an aggregate tail index of the market (Chollete and Lu, 2011; Kelly and Jiang, 2014). This is equivalent in spirit
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to Ang et al. (2006a) and Chang et al. (2013), who measure stock return’s sensitivity to innovations in market volatility and
market skewness, respectively. Increased market volatility, negative skewness, and large tail index represent deteriorating investment
opportunities with different emphases on normal or extreme cases. CER, similar to the tail dependence and comoment measures,
connects the stock return with the market return in a more direct way, thus providing a more traditional aspect of tail risk pricing
in contrast to Chollete and Lu (2011) and Kelly and Jiang (2014).

Another academic treatment of extreme risk includes introducing disaster states or jumps into the growth rate of consumption
or returns of financial asset portfolios. Rietz (1988) and Barro (2006), among others, demonstrate that equity premium involves a
compensation for potential crash risk of consumption. These works are corroborated by the risk premium uncovered from structural
models that specify and estimate jump dynamics (e.g., Eraker et al., 2003; Wu, 2006; Bollerslev and Todorov, 2011). Complementing
this body of work, our study employs the general safety-first preference framework with no need to specify consumption or return
dynamics. Consistently, the empirical construction of CER based on extreme value algorithm is suitable for any return distributions,
which greatly simplifies its estimation and expands its scope of application.

The remainder of this paper is organized as follows. Section 2 introduces the methodology for CER measurement. Section 3
reports statistics for the CER estimate, its validity as a measure of indicating price drops during realized rare market crashes, and
the results for CER’s ability to explain the cross-section of expected stock returns. Section 4 investigates the mutual influences
between CER and downside beta, coskewness, and cokurtosis. Section 5 examines the difference between CER and tail dependence
and their asset pricing effects. Section 6 provides robustness tests. Section 7 concludes.

2. Conditional extreme risk measurement

As a risk measure, the unique feature of CER is that it directly estimates the expected payoff of an individual stock if the market
suffers from a small-probability but unusually large drop, which is consistent with the economic intuition of systematic extreme
risk. Specifically, we construct CER as

𝐶𝐸𝑅𝛼,𝑖 =
𝐸
(

𝑅𝑖|𝑅𝑀 = 𝑉 𝑎𝑅𝛼,𝑀
)

𝑉 𝑎𝑅𝛼,𝑀
, (1)

where 𝑅𝑀 refers to market return, and 𝑉 𝑎𝑅𝛼,𝑀 is its 𝛼-probability VaR for a sufficiently small 𝛼, representing the rare but severe
arket calamity. 𝐸(𝑅𝑖|𝑅𝑀 = 𝑉 𝑎𝑅𝛼,𝑀 ) is the expected return of stock i conditional on the market return being equal to 𝑉 𝑎𝑅𝛼,𝑀 .
e scale the conditional stock return by market VaR, which is common to all stocks in the cross-section, to be consistent with

he risk factor identified in the RASF model as illustrated in the online appendix. Market VaR can be estimated via the extreme
alue theory (EVT) method which quantifies the stochastic behavior of a process at unusually large or small levels. The conditional
xtreme value approach developed by Heffernan and Tawn (2004) and Hilal et al. (2011) assesses inter-variable relations in a
wo-dimensional setting where only one of the random variables is extreme, providing a suitable statistical framework to estimate
he stock’s conditional expected return.

We start from estimating the marginal cumulative distribution functions (CDFs) of the log return series for stock i and the market
, that is, 𝑋𝑖 = log

(

1 + 𝑅𝑖
)

and 𝑋𝑀 = log
(

1 + 𝑅𝑀
)

, by

𝐹 (𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐹 (𝑑)
[

1 − 𝜉
(

𝑥 − 𝑑
𝛿

)]−1∕𝜉
for 𝑥 < 𝑑

𝐹 (𝑥) for 𝑑 ≤ 𝑥 ≤ 𝑢,

1 −
[

1 − 𝐹 (𝑢)
]

[

1 + 𝜉
(

𝑥 − 𝑢
𝛿

)]−1∕𝜉
for 𝑥 > 𝑢

(2)

where the generalized Pareto distribution (GPD) with shape parameter 𝜉 and scale parameter 𝛿 is used to model the distribution
of extreme tail observations beyond a high threshold u and a low threshold d. The empirical distribution 𝐹 is used to portray the
non-tail part of the distribution. This distribution estimation extends Hilal et al. (2011) by describing both tails by GPD Hilal et al.
(2011) only model one tail with GPD, see Eq. (1) of their paper on p. 2376). GPD is an appropriate specification in the extreme value
paradigm to model the distribution of excesses over a suitably chosen threshold, and enjoys an asymptotic justification ensuring
that the relevant estimates are invariant to the parent distributions.

The GPD model can be estimated by the maximum likelihood method, and parametric GPD facilitates the extrapolation for the
magnitudes of rare events, which has been shown to give a superior estimate for VaR (Bali, 2003). A 1%-VaR represents the severity
of a rare once-in-100-chance loss event which is used as a proxy for extraordinary market loss in our setting. To estimate VaR, we
negate the log returns 𝑋𝑖 and into 𝑌𝑖 = −𝑋𝑖 and 𝑌𝑀 = −𝑋𝑀 so that the upper tail region can be focused on. We adopt this treatment
to estimate the CDFs in Eq. (2) for stock and market returns. The right tail of Eq. (2) gives the 1%-VaR of the negated log market
return as

𝑉 𝑎𝑅1%,𝑀 = 𝑢𝑌𝑀 +
𝛿𝑀
𝜉𝑀

{

[

100
(

1 − 𝐹𝑌𝑀

(

𝑢𝑌𝑀
))]𝜉𝑀

− 1
}

. (3)

Since extreme risk by nature is of a long-term property, it is reasonable to treat tail risk estimated using the most recent historical
bservations as an approximation for the tail risk expected in the period immediately following. Therefore, the predicted market
aR of the original scale can be proxied as

𝑀𝑘𝑡𝑉 𝑎𝑅 = exp
(

−𝑉 𝑎𝑅
)

− 1. (4)
1% 1%,𝑀
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To estimate a stock’s expected return conditional on the market 1%-VaR, we first follow Hilal et al. (2011) to remove the effect
of the margins by transforming (𝑌𝑖, 𝑌𝑀 ) into another set of random variables (𝑍𝑖, 𝑍𝑀 ) having common Laplace margins, as follows
the market margin can be analogously transformed):

𝑍𝑖 =

⎧

⎪

⎨

⎪

⎩

log
[

2𝐹𝑌𝑖

(

𝑌𝑖
)

]

if 𝐹𝑌𝑖

(

𝑌𝑖
)

≤ 0.5

− log
[

2
(

1 − 𝐹𝑌𝑖

(

𝑌𝑖
)

)]

if 𝐹𝑌𝑖

(

𝑌𝑖
)

> 0.5
. (5)

The asymptotic dependence structure of the transformed random variables (𝑍𝑖, 𝑍𝑀 ) is determined by the conditional distribution
f 𝑍𝑖|𝑍𝑀 = 𝑧 as 𝑧 → ∞. Based on a wide range of theoretical examples, Heffernan and Tawn (2004) show that there exist real
ormalizing functions 𝑎𝑖|𝑀 (𝑧) and 𝑏𝑖|𝑀 (𝑧) such that the standardized variable 𝑆

𝑖|𝑀
= 𝑍𝑖−𝑎𝑖|𝑀 (𝑧)

𝑏𝑖|𝑀 (𝑧) satisfies

𝑍𝑖 = 𝑎𝑖|𝑀 (𝑧) + 𝑏𝑖|𝑀 (𝑧)𝑆𝑖|𝑀 , with 𝑧 = 𝑍𝑀 > 𝑢𝑍𝑀
for a high threshold 𝑢𝑍𝑀

. (6)

As shown by Hilal et al. (2011, p. 2377), for distributions with standard Laplace margins, the normalizing functions are given
y 𝑎𝑖|𝑀 (𝑧) = 𝛼𝑖|𝑀𝑧 and 𝑏𝑖|𝑀 (𝑧) = 𝑧𝛽𝑖|𝑀 with −1 ≤ 𝛼𝑖|𝑀 ≤ 1 and 𝛽𝑖|𝑀 ≤ 1, which suggests that Eq. (6) translates into

𝑍𝑖 = 𝛼𝑖|𝑀𝑧 + 𝑧𝛽𝑖|𝑀𝑆
𝑖|𝑀

, with 𝑧 = 𝑍𝑀 > 𝑢𝑍𝑀
for a high threshold 𝑢𝑍𝑀

. (7)

It naturally follows that the expected value of 𝑍𝑖|𝑍𝑀 = 𝑧 > 𝑢𝑍𝑀
is given by

𝐸
(

𝑍𝑖|𝑍𝑀 = 𝑧 > 𝑢𝑍𝑀

)

= �̂�𝑖|𝑀𝑧 + �̂�𝑖|𝑀𝑧𝛽𝑖|𝑀 , (8)

here �̂�𝑖|𝑀 is the maximum likelihood estimate of the mean of 𝑆
𝑖|𝑀

= 𝑍𝑖−𝛼𝑖|𝑀 𝑧

𝑧𝛽𝑖|𝑀
under the assumption made by Heffernan and Tawn

(2004) and Hilal et al. (2011) that 𝑆𝑖|𝑀 ∼ 𝑁(𝜇𝑖|𝑀 , 𝜎2𝑖|𝑀 ) (see Section 3.2.3 of Hilal et al. (2011, p. 2377) for more details about the
stimation rationale and procedure).

Therefore, conditional on the 1%-VaR of the market return, a stock’s expected return is estimated by first transforming the 99%
uantile of 𝑌𝑀 (which corresponds to the 1%-VaR because we are making use of the upper tail data) into the corresponding value
of the standard Laplace variable 𝑍𝑀 , and then applying the Heffernan–Tawn theory to estimate 𝐸(𝑍𝑖|𝑍𝑀 = 𝑧). The conditional

𝐸(𝑍𝑖) is then back transformed into 𝐸(𝑌𝑖) via the Laplace-margin distribution and the CDF with GPD tails, and then into the return
of the original scale 𝐹 𝑖𝑟𝑚𝑅𝑒𝑡𝑖|𝑀𝑘𝑡𝑉 𝑎𝑅1% for stock i, applying stock i’s versions of Eqs. (5), (2), and (4), sequentially.

We scale the conditional expected return of stock i by the corresponding market 1%-VaR, and compute CER as

𝐶𝐸𝑅1%,𝑖 =
𝐸
[

𝑅𝑖|𝑅𝑀 = 𝑉 𝑎𝑅1%,𝑀
]

𝑉 𝑎𝑅1%,𝑀
=

𝐹 𝑖𝑟𝑚𝑅𝑒𝑡𝑖|𝑀𝑘𝑡𝑉 𝑎𝑅1%
𝑀𝑘𝑡𝑉 𝑎𝑅1%

. (9)

Some crucial considerations are in order for the CER measurement. First, the basic idea of CER is the expected stock performance
when the market is experiencing a large plummet. This market plummet can be indicated by the magnitude of loss associated with
a small probability. We use a 1%-probability loss magnitude as the indicator, which is by definition equal to the 1%-VaR. Here, we
are not talking about the case when the market return is exactly equal to the value of VaR — such case does not exist because the
probability of a continuous variable being equal to a single value is always zero. To put it another way, the expression in Eq. (1)
is for the convenience of notation, which should be interpreted from an economic angle rather than in a statistical way. Another
important reason to choose VaR as the indicator for market plummet is that it is required by the safety-first asset pricing model
of Arzac and Bawa (1977) in which the market VaR appears in the theoretical expressions (as shown in Section I of the Online
Appendix). Existing literature also has adopted the same way to represent the market crash condition, for example, Van Oordt and
Zhou (2016).

Second, one may argue that using the expected shortfall (ES) (i.e., the event when the market return is lower than the VaR) to
measure the condition of market collapse makes more statistical sense. Empirically, it is perfectly fine to use ES as the denominator
in the CER construction, but doing so would be less consistent with the theoretical implication of Arzac and Bawa (1977). Another
reason of using VaR is that it is always corresponding to the same probability level (i.e., 1%), but using ES would correspond to
different probability levels. After all, given any value of loss magnitude, in order to estimate CER, we have to first find the quantile
that corresponds to this loss value. Because different stock distributions have different tail thickness, even the same 1%-ES can be
associated with different quantile values.

Third, our description of return distribution in Eq. (2) is based on the limiting arguments of GPD model which holds for stationary
dynamics or series with limited long-range dependence at extreme levels (Coles, 2001). As shown by Longin and Solnik (2001), GPD
tails can be obtained for return processes commonly used in finance, even though the process may not be strictly i.i.d. To make
our estimation more robust, we also accommodate the conditional heteroscedasticity through a GARCH filtering of the time-series
of market and individual returns and apply the GDP to the innovations that are closer to i.i.d., following McNeil and Frey (2000).
Such an approach focuses on stocks’ dependence on market tails isolated from the conditional volatility that also captures part of the
heavy-tail characteristics (e.g., Poon et al., 2004; Jondeau et al., 2007), thus raising the possibility that the CER effect on expected
returns is due to predicted volatility which prevails over the extremal dependence. The GARCH augmented estimation also involves
more non-EVT parameters, exerting heavier computational burden and potentially more noises. Despite these concerns, we find

results (available upon request) with similar asset pricing effects of CER in the GARCH scheme.
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Fourth, we admit that despite their strong statistical advantage, the approaches to estimating the GPD marginal distribution tails
and the conditional Heffernan–Tawn dependence depend on asymptotic characterizations of the probabilistic structure, and the
entailed results based on VaR as a proxy for extreme event should not be treated as exact for finite sample. It is therefore important
to check the sensitivity of CER estimate and its asset pricing implication to the rarity of market downturns (i.e., the probability level
of market VaR). Additionally, in CER estimation, there are two sets of benchmark values: The first is for the GPD tail estimation
(i.e., d and u) in Eq. (2), and the second is for the Heffernan–Tawn dependence estimation (i.e., 𝑢𝑍𝑀

) in Eq. (7). The overall findings
tend to be more reliable if they are invariant to different benchmarking schemes. We address these issues in the following section
as well as in the robustness tests.

3. Conditional extreme risk and the cross-section of stock returns

3.1. Data and statistical summary of CER estimates

Brownlees and Engle (2017) emphasize that financial crisis is a prolonged market decline and should entail a sufficiently long
horizon and extreme threshold loss. ‘‘Otherwise, when the horizon is short and the threshold is modest, the role of risk is dramatically
reduced’’ (Brownlees and Engle, 2017, p.55). They set the horizon to a month in order to compare more naturally with other monthly
frequency indicators of distress. Barberis et al. (2016), in a prospect theory framework, suggest that ‘‘a natural mental representation
of a stock’s past return distribution is the distribution of its monthly returns over the previous five years’’ (Barberis et al., 2016,
p.3070) and across various sources, ‘‘the daily and weekly fluctuations are not discernible, but the monthly fluctuations are, and they
make a clear impression on the viewer’’ (Barberis et al., 2016, p.3076). We share the same considerations, and therefore adopt the
past five year’s monthly return data (a total of 60 for each estimation window) to estimate CER. As in most asset pricing tests, we use
monthly stock excess returns as proxies for equity premia. Our corresponding CER estimates on a monthly basis are also consistent
with this horizon. Although the fat-tailedness of monthly stock or index returns may be less pronounced than that of higher-frequency
return series, technically the GPD specification for marginal tails and the dependence structure in the Heffernan–Tawn model are
applicable to both fat- and thin-tailed random processes, which is ensured by their asymptotic properties independent of the parent
distributions.1 Consequently, the magnitudes of rare market plummets (and the corresponding conditional expected stock returns)
can be estimated based on data from both volatile and tranquil periods. Our approach therefore differs from disaster-based studies
that rely on historical realizations of rare macro events, phenomena less likely to be observed in tranquil times.

Using 60 months’ returns to estimate a 1%-probability market event is obviously challenging for traditional methods. Our EVT-
based method, however, with its unique property of dealing with small samples, can fulfill the goal. The limiting laws in extreme
value methods are well-known for their ability to ‘‘predict the unpredictable’’ (Matthews, 1996, p.37), namely, to provide inference
of extreme levels greater than those observed in historical data. For example, we can predict a once-in-100 chance event using less
than 100 observations. This feature makes EVT especially suitable for studying small-probability risk. Combined with the fact that
CER estimation only involves financial markets data for stocks and equity indexes, the CER approach effectively extenuates the
‘‘peso problems’’ often encountered in empirical studies relying on historical disaster events. Moreover, the extreme value approach
adopted in this paper utilize real return data, rather than simulated data that are used in other crash studies (e.g., Brownlees and
Engle, 2017), thus avoiding the heavy computational burden usually associated with simulations, especially for studies involving
cross-sectional asset pricing which normally consider a large group of stocks over a long period. To further ease the concerns about
the potential estimation noise due to small sample size, we will show that our EVT-based estimation has good predicting power of
crash risk and also stocks’ black swan hedging property. We also check the robustness of our CER measure in various benchmarking
and data screening schemes. We have even tried the CER estimation using daily data, and find consistent, albert weaker, results
(available upon request).2 All these evidence suggests the reliability of our measure as an indicator of conditional extreme risk.

A main difficulty in our extreme value approach is the threshold choice, i.e., the benchmarks d and u to define marginal
distribution tails for GPD specification in Eq. (2), and the threshold 𝑢𝑍𝑀

to describe conditional asymptotic distributions of the
transformed returns in Eq. (7). If the threshold is much stringent, the asymptotic theory applies but the estimation involves too few
observations which give large standard errors; on the other hand, a threshold that gives more observations can reduce the variance of
estimator at the cost of increased biases, because the tail is contaminated by observations from the central part and the asymptotic
property deteriorates. Although there are technical methods (Embrechts et al., 1997; Coles, 2001) to recommend the ‘‘optimal’’
threshold levels by trying different candidate values, we find it impractical to determine the benchmark set for a large number of
individual stocks in each rolling estimation window by trial-and-error.3 Instead, we follow the common practice in the literature by
choosing the same percentile threshold for all stocks and the market. Considering the estimation bias and variance trade-off in the
threshold selection, we use the top and bottom 20th percentiles as the up and down thresholds, respectively, to disentangle tails
from the non-tail part, and we adopt the top 20th percentile of the market returns to separate out the stock-market pairs for their

1 The literature has documented departures of monthly security returns from normality. See Campbell et al. (1997, p. 208), and the references therein.
2 The weaker results could be due to the microstructure noise (e.g., nonsynchronous trading and bid–ask bounces) of daily return data (Campbell et al.,

997), or due to investors’ less concern about daily performance relative to monthly performance (Barberis et al., 2016; Brownlees and Engle, 2017), both of
hich make the resulting CER estimates less reliable to capture systematic extreme risk. In addition, conditional one-period ahead predicted mean value as a

isk measure using shorter-horizon (e.g., daily) returns may not match the risk premium horizon (e.g., monthly) in empirical asset pricing tests.
3 An often used method for threshold choice is the minimum mean-squared error (MSE) criterion. The MSE of an estimator �̂� of 𝜃 is defined by

𝑀𝑆𝐸(�̂�) = 𝐸(�̂� − 𝜃)2 = [𝐸(�̂� − 𝜃)]2 + var(�̂�), which shows that MSE is the sum of squared bias and variance.
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dependence description.4 This operation gives 12 observations for each marginal distribution tail and Heffernan–Tawn dependence
estimation (since some stocks have missing return data in certain estimation periods, we require a minimum of 10 observations).
To ensure that our results are not sensitive to the specific thresholds selected, we also estimate CERs under alternative 15th and
25th percentile benchmarking schemes, and report their values and asset pricing effects in robustness checks.

We retrieve monthly return data from CRSP for all common stocks listed on the three major U.S. markets NYSE, NYSE MKT
(former Amex), and Nasdaq from January 1926 to December 2013. We consider this long period because it covers many major
macroeconomic and securities market turbulence times ranging from the Wall Street crash of 1929 to the recent subprime mortgage
crisis in 2007–2008, and is therefore suitable for rare risk studies. We note that our main results remain robust for a shorter period
starting from July 1963, which are reported below in analyses involving book-to-market ratio and liquidity beta that have estimates
only after June 1963. These analyses also serve as a further subsample check of the CER effect. We use the CRSP value-weighted
index return to proxy for market performance. At the end of each month t, we use the preceding 60 months’ returns up to and
including month t, to estimate market 1%-VaR𝑀𝑘𝑡𝑉 𝑎𝑅 and individual stocks’ conditional expected returns 𝐹 𝑖𝑟𝑚𝑅𝑒𝑡|𝑀𝑘𝑡𝑉 𝑎𝑅 for
the next month t+1 as well as CERs as market VaR-scaled conditional expected stock returns. We focus on market VaR of a 1%
robability after balancing the economic requirement of the conditional extreme value model and the technical precision of the
stimation. A more severe crash would be more consistent with the asymptotic basis of the extreme value model, but the estimation
ecomes noisier if we use a limited number of observations to predict a rarer event. We also assess the results from using VaRs of
arious alternative probability levels in the robustness analyses.

Table 1 reports basic statistical summary of CER and its components. Before computing the statistics, we trim off the top and
ottom 2.5% most extreme values of CER and 𝐹 𝑖𝑟𝑚𝑅𝑒𝑡|𝑀𝑘𝑡𝑉 𝑎𝑅 estimates to exclude the influence of outliers because these values
re unreasonably too big or too small.5 Panel A shows that the average monthly market 1%-VaR MktVaR is −11.98%, suggesting

that for a 1% probability, the market is predicted to drop by 11.98% or more in any given month. MktVaR is negatively skewed,
as corroborated by the asymmetric maximum (−4.34%) and minimum (−31.63%) values around the median (−9.96%). The largest
drop, as indicated by the minimum MktVaR, is remarkable and obviously not observed in history, which showcases GPD’s ability
to extrapolate extreme values beyond the range of historical observations. Conditional on the market having a 1%-VaR drop in the
coming month, individual stocks’ corresponding expected return 𝐹 𝑖𝑟𝑚𝑅𝑒𝑡|𝑀𝑘𝑡𝑉 𝑎𝑅 is −12.82% on average, resulting in a mean CER
f 1.1274.6 The median of CER is at a similar level of 1.0810. Therefore, the majority (more than half) of the individual stocks
everely drop together with the market during rare market down times, which makes the potential market index plummet a sign
or common or systematic extreme risk. On the other hand, 45.62 percent (not reported in the table) of the stocks do not drop as
uch as the market (i.e., with CERs less than one), constituting a significant body of equities with black swan hedging potential of

arious degrees.
Not surprisingly, as shown in the correlation analysis in Panel B, larger conditional individual stock price drops are associated

ith higher CERs: The Pearson and Spearman correlation coefficients between 𝐹 𝑖𝑟𝑚𝑅𝑒𝑡|𝑀𝑘𝑡𝑉 𝑎𝑅 and CER in the pooled sample
are −0.8082 and −0.8492, respectively, as in the lower-left and upper-right triangles. 𝐹 𝑖𝑟𝑚𝑅𝑒𝑡|𝑀𝑘𝑡𝑉 𝑎𝑅 is positively correlated
with MktVaR, consistent with Panel A’s evidence that individual stocks and the market in general tend to plunge together during a
market crash. The average hedging ability of stocks, however, does not seem to substantially weaken amid a market-wide plummet,
because the Pearson and Spearman correlations between CER and MktVaR are much smaller in magnitude (−0.0434 for Pearson
nd −0.0868 for Spearman). This evidence holds the promise that some stocks can de facto hedge away at least part of the market
rash risk when the crash is considerably severe and the hedging is needed most. We will show whether investors take this black
wan hedging characteristic into consideration when pricing equities.

In Fig. 1, we depict the average levels of CER and its components (𝐹 𝑖𝑟𝑚𝑅𝑒𝑡|𝑀𝑘𝑡𝑉 𝑎𝑅 and MktVaR) as a time series, along with
he average monthly stock returns represented by the CRSP VW index returns. To make the plots easier to read, we smooth the time
eries values by taking the 12-month moving averages. Since the first CER and its components estimates are available at the end of
ecember 1930 due to the 60-month rolling window scheme, 12-month moving average suggests that the time series in Fig. 1 start

rom November 1931. The left vertical axis represents return levels (for VaR and market index), and the right vertical axis refers to
he scale for CER.

Consistent with the information from Table 1, Fig. 1 shows that over the time, although 𝐹 𝑖𝑟𝑚𝑅𝑒𝑡|𝑀𝑘𝑡𝑉 𝑎𝑅 and MktVaR have
losely related trends, the level of one variable, relative to the other, is not always higher or lower, resulting in a much volatile
atio of 𝐹 𝑖𝑟𝑚𝑅𝑒𝑡|𝑀𝑘𝑡𝑉 𝑎𝑅 over MktVaR, i.e., CER. On average, CER is saliently lower, i.e., the black swan hedging feature is more
ronounced, during mid-1940s, the decade after 1957, late-1990s (especially 1996 and 1998), and roughly the five years before the
007–2008 financial crisis. In general, CER does not exhibit a strong association with the historical realized market returns (their
earson correlation coefficient (untabulated) is only −0.0125), which is understandable because CER is estimated using the previous
0 months’ returns, and the most recent month is unlikely to dominate its value. However, it is important to examine, before a large
rop in market return, whether our ex ante CER measure, which is estimated before the market plunge, can effectively predict the
erformance of an individual stock during the extreme market down time. We address this issue in the following subsection.

4 McNeil and Frey (2000) and McNeil et al. (2005) use Monte Carlo simulations to investigate the MSE-based threshold choice and suggest sufficiently loose
enchmarks for GDP models. Consistently, it is not uncommon to use the seemingly not-so-extreme thresholds for dependence modeling, as in Heffernan and
awn (2004).

5 The trimming exercise is not imposed to MktVaR since it is a value common to all stocks and only has one observation each month. As will be explained
later, its maximum and minimum values are not so extreme to be safely considered as unreasonable. Besides, we find that even using trimmed FirmRet|MktVaR
to compute CER, the resulting CER still exhibits some unrealistically extreme values. We therefore resort to trimming raw CER directly.

6 Note that the ratio of mean FirmRet|MktVaR to mean MktVaR is slightly different from the reported mean CER. It is due to the trimming of unrealistically
xtreme observations for the CER and FirmRet|MktVaR estimate series.
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Table 1
Summary statistics of CER and its components.

Panel A: Summary statistics

Mean StdDev Skewness Kurtosis Minimum 25% Median 75% Maximum

CER 1.1274 0.7193 0.3269 −0.3899 −0.3606 0.5928 1.0810 1.6018 3.0922
FirmRet|MktVaR −0.1282 0.0898 −0.4849 −0.4743 −0.3695 −0.1883 −0.1176 −0.0566 0.0303
MktVaR −0.1198 0.0592 −1.0202 0.2688 −0.3163 −0.1582 −0.0996 −0.0795 −0.0434

Panel B: Correlations

CER FirmRet|MktVaR MktVaR

CER 1.0000 −0.8492 −0.0868
FirmRet|MktVaR −0.8082 1.0000 0.4949
MktVaR −0.0434 0.4787 1.0000

Conditional extreme risk (CER) is measured as the expected return of an individual stock given the market return is at its predicted 1%-VaR level (FirmRet|MktVaR),
scaled by the market 1%-VaR (MktVaR). CER measurement involves GPD specification of stock and market return distribution tails and dependence structure
estimation based on a conditional multivariate extreme value approach. The estimation of CER and its components is conducted on a 60-month rolling window
basis, using monthly return data retrieved from CRSP for all common stocks listed on NYSE, NYSE MKT (former Amex), and Nasdaq. Market returns are
approximated by CRSP value-weighted index returns. The top and bottom 20th percentiles are used as thresholds to respectively identify right and left tail
observations to be characterized by the GPD model, and the top 20th percentile is used as the minimum benchmark to isolate negated and transformed market
returns for dependence estimation (see the text for details). Panel A presents full sample summary statistics of CER, FirmRet|MktVaR, and MktVaR. The top and
bottom 2.5% observations of CER and FirmRet|MktVaR are trimmed off before the statistics are computed. Panel B reports their Pearson and Spearman correlation
coefficients in the lower-left and upper-right triangles, respectively, with bold numbers indicating statistical significance at the 1% level.

Fig. 1. The Time Series of Average Levels of CER (and Its Components) and Market Return. This figure presents the time series of the average levels of
CER and its components (FirmRet|MktVaR, MktVaR), as well as the monthly CRSP value-weighted index returns (MktRet). A 12-month moving average scheme is
applied before the time-series lines are plotted. The right vertical axis refers to the scale for CER, and the left vertical axis indicates the scale for other variables.

3.2. Validation of CER as a measure of indicating price drops during realized market crashes

Before testing the asset pricing implication of CER, we validate it as a measure of riskiness conditional on market crashes. By
definition, high CER stocks are those expected to lose heavily if a rare market plunge actually occurs. They should perform worse
than low CER stocks when small-probability but substantial negative market returns are realized. We examine whether this is the
case. Specifically, we focus on the 50 months with the largest market drops during the 996-month sample period of 1931–2013
with valid month-beginning CER estimates. We identify five market crash scenarios with each consisting of 10 months: Scenario
1 contains the 10 lowest market return months, and scenario 2 involves the next 10 lowest returns, and so on. We classify stocks
each month into tertile groups according to their CER estimates at the beginning of the month, with the highest (lowest) tertile
containing stocks with high (low) CERs, relative to stocks in the middle tertile that have intermediate CERs. To assess the ability of
CER in reflecting stock performance conditional on realized market crashes, we first check the probability that stocks belonging to a
CER tertile at the beginning of the month also appear in the same tertile of realized price drops at the end of the month, where the
price drop tertiles are created according to the magnitude of realized loss during the month, i.e., the highest (lowest) tertile consists
of stocks with the largest (smallest) price drops. We compute the CER-price drop transition probabilities for CER tertiles under each
market crash scenario. If CER has no power in predicting conditional stock performance when the market collapses, then these
transition probabilities will all be around 33%. Instead, if high (low) CER can indicate large (small) price drops in a market crash
scenario, the probabilities should exceed 33%. An alternative and more direct way to uncover CER’s ability in reflecting potential
risk conditional on extreme market plunges is to examine the average realized price drop of each CER tertile, and high CER stocks
are expected to suffer from more substantial losses when the market crashes. We conduct both analyses and report average transition
probabilities and price drops of different CER tertiles for each market crash scenario in Panels A and B of Table 2, respectively.

Consistent with the nature of CER as capturing risk under extreme market downturn conditions, Panel A shows that in scenarios
with realized market crashes of various magnitudes, the transition probabilities of CER tertiles all exceed 33%, with the highest
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Table 2
Performances of stocks with different CERs when the market experiences crashes.

Panel A: Average CER-price drop group transition probabilities

Market crash
scenario 1

Market crash
scenario 2

Market crash
scenario 3

Market crash
scenario 4

Market crash
scenario 5

Realized market
return ∈ [−29.01%,
−13.54%]

Realized market
return ∈ [−13.34%,
−10.82%]

Realized market
return ∈ [−10.53%,
−9.61%]

Realized market
return ∈ [−9.47%,
−8.37%]

Realized market
return ∈ [−8.32%,
−7.42%]

average return =
−19.88% n = 10

average return =
−11.95% n = 10

average return =
−10.05% n = 10

average return =
−8.83% n = 10

average return =
−7.91% n = 10

Low CER stocks 49.92% 50.98% 43.98% 43.10% 37.93%
Intermediate CER stocks 36.83% 36.70% 34.45% 33.64% 32.77%
High CER stocks 49.55% 49.69% 49.12% 43.35% 43.04%

Panel B: Average price drops in percentage

Low CER stocks −18.25% −11.49% −7.57% −8.38% −8.31%
Intermediate CER stocks −22.59% −16.07% −10.19% −10.79% −8.61%
High CER stocks −26.90% −19.95% −14.60% −12.42% −10.18%
High - Low −8.65% −8.46% −7.04% −4.05% −1.86%

[−13.10] [−6.92] [−7.59] [−3.98] [−1.69]

Five market crash scenarios, each containing 10 months, are identified from the 50 months with the largest market drops during the full sample period of
1931–2013. Scenario 1 includes the 10 lowest market return months, scenario 2 involves months with the next 10 lowest returns, and so on. Stocks are classified
into tertile groups according to their CERs (estimated using the previous 60 months’ monthly return data) at the beginning of each market crash month. The
lowest tertile includes low CER stocks, the highest tertile includes high CER stocks, and the other tertile includes intermediate CER stocks. Panel A reports, for
each CER group in each market crash scenario, average probability that stocks belonging to a CER group i (i = 1, 2, 3) at the beginning of the month also
appear in tertile group i of realized price drops at the end of the month, where the price drop groups are created according to the magnitude of realized loss
during the month, i.e., group 3 (1) consists of stocks with the largest (smallest) price drops. Panel B reports average price drops for stocks in each CER group
under different market crash scenarios, along with the average differences in price drop ‘‘High - Low’’ and the associated t -statistics (in brackets).

values appearing in the top (i.e., high CER) and bottom (i.e., black swan hedging) tertiles. In crash scenario 1 that includes the 10
most severely collapsed months of the market, the probability of a stock in the highest CER tertile appearing in the largest price
drop tertile and the probability of a black swan hedging tertile stock falling into the smallest price drop tertile are both close to
50%. A similar phenomenon is observed in the other four scenarios with relatively less severe market crashes, and is more persistent
for high CER stocks. Therefore, there is clear evidence that when a disaster (and especially an extremely severe disaster) hits the
market, high CER stocks are more likely to drop more and low CER ones are more likely to drop less (i.e., hedge the market black
swan).

Panel B directly compares the price drops of CER tertiles. It is evident that stocks with high CERs experience price drops
substantially larger than low CER stocks. This is especially true for scenarios with more extreme market plunges. For example,
in crash scenario 1, which has an average market decline of 19.88% per month, high CER entails an extraordinary plummet of
26.90%. In contrast, low CER brings an average price drop of only 18.25%, which is 865 bps smaller (in magnitude) relative to
high CER, thus effectively hedges the black swan in the market. In other words, black swan hedging (i.e., low CER) stocks indeed
suffer much less relative to high CER counterparts during severe market crashes. This observation persists under other scenarios
with less severe market plunges, although the price drop differences between high and low CERs become relatively smaller. In
market crash scenario 2, black swan hedging stocks outperform high CER stocks by 846 bps per month. The corresponding price
drop difference reduces to 704, 405, and 186 bps in scenarios 3 to 5. These values, although declining from more to less severe
market crashes, are all substantial considering the fact that they are based on monthly returns. Indeed, these 50 crash months have
a sizeable overall average market plummet of 11.72% per month, and high CER stocks underperform low CER stocks by 601 bps
per month on average. It is thus reasonable to consider months with such large market drops as market crash situations. From
another perspective, the declining trend of the price drop magnitude actually supports the validity of our CER measure since CER
is constructed to reflect the relative riskiness under extremely negative market conditions. For a less extreme market down scenario,

ER is not supposed to indicate conditional risk (and black swan hedging) as effectively as in a more extreme market crash situation.
n fact, for months with no market crash, high CER no longer leads to large price drops. In these cases, high CER stocks are actually
ssociated with high future returns. The reason for this is, as documented above, high CER stocks tend to plunge more in market
rises and thus are much risky. If investors have serious concern about such risk, especially when such risk is more prominent, they
ould require a premium for bearing high CER and accept a discount for potential black swan hedging, as reflected in expected

eturns. We conduct detailed analyses on this issue in the following subsection.

.3. CER and the cross-sectional variation of expected stock returns

We zero in on two aspects to examine the ability of CER (and equivalently, black swan hedging) to explain the cross-sectional

ariation of expected stock returns. First, when investors face high predicted market extreme risk or feel pessimistic about the
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potential harsh market environment, they have stronger motives to shun positions with which they would be exposed to catastrophic
losses and therefore require large compensation for holding high CER assets. As the prospect of the market environment keeps
changing, this means CER premium should vary with the predicted market extreme conditions. More specifically, when the market
VaR is expected to be large, which indicates a more dreadful potential market crash, disaster-avoidance becomes investors’ top-
priority according to the safety-first principle, and the reward (premium) to high CER should be large. When a market disaster
seems rather remote, the safety-first concern may be extenuated and the CER premium can diminish.

Second, as shown in the previous subsection, high CER stocks lose heavily when a severe market plunge actually takes place, that
is, they perform much worse than low CER counterparts when substantially negative market returns are realized. Given this fact, the
verage premium to CER should be entirely due to the gains of high CER stocks during non-crash periods. This is consistent with the
isaster risk argument by Rietz (1988, p. 118) who claims that ‘‘(r)isk-averse equity owners demand a high return to compensate
or the extreme losses they may incur during an unlikely, but severe, market crash. To the extent that equity returns have been high
ith no crashes, equity owners have been compensated for the crashes that happened not to occur’’. In other words, the source of

he CER premium is from non-crisis times, which outweighs the large losses a stock experiences during the worst market return
onths.

Table 3 provides empirical evidence regarding the above implications. In Panel A, we examine whether the CER effect is more
rominent when the market crash is expected to be more severe. To do so, we examine mean excess returns of CER quintiles within
ample months of different predicted market extreme risks as proxied by the market VaR estimates. Specifically, we consider months
anked within the top 10 percent, 20 percent, and 50 percent of all months in the sample period based on the magnitude of market
%-VaR.7 The top 10 percent represents the time when the market crash is expected to be the most devastating, and the top 20
ercent refers to months with expectations of crash risk large enough but not as severe as in the top 10 percent subperiod, and so on.
e also examine all months in the full sample period. In each case, we report average excess returns of CER portfolios along with the
ean CER estimates and the high-minus-low (i.e., portfolio 5 minus portfolio 1) differences in return and CER. The results show a
onotonic increase of excess return from low to high CER portfolios in each of the subperiods and the full period. The return spreads

etween the top and bottom CER quintiles are all significantly positive. Such a CER premium is especially pronounced in months
ith large predicted market extreme risk. For example, as reported in the ‘‘Excess return EW’’ rows, the EW average return spread
etween high and low CER portfolios within the top 10 percent predicted market VaR months is 194.43 bps per month (Newey–West
-value = 2.73), which translates into a 26.00% premium per annum based on monthly compounding. The CER premium declines as
e extend the sample to include more months with relatively smaller predicted market VaR values. In the top 20 percent market VaR
onths, the monthly premium is 135.39 bps, and in the top 50 percent market VaR months, it reduces to 97.15 bps. The full-period

verage premium is 44.46 bps per month. This trend confirms the significance of the safety-first concern and the disaster-avoidance
otive in investor preference, since such concern and motive become stronger with a larger predicted market crisis. Meanwhile,

verage CER levels have a narrower range when the market extreme risk is expected to be larger. Therefore, the CER pricing effect
s more prominent when the predicted market crash is more severe, and investors require a higher compensation for bearing CER
hen they feel gloomy about the market. The black swan hedging attribute is especially valuable during these times and even a

elatively small change in CER entails a large difference in expected stock return.
The last column of Panel A, also in the ‘‘Excess return EW’’ rows, shows the coefficients of CER in the Fama and MacBeth (1973)

egressions of expected monthly excess returns (in percentage) on CER within each market VaR subperiod and the full period. We
ind a consistent pattern: The CER coefficient is 1.6194 in months with the top 10 percent market VaRs, and monotonically declines
o 0.3407 in the full sample period.

We observe that in all periods with different levels of expected ‘‘extremeness’’ for market condition, the CER premia detected from
he portfolio and regression analyses are significant in both statistical and economic terms. All the values are associated with large
-statistics. The monthly return differences between high and low CER portfolios are above 97 bps for the periods that include up
o 50 percent of all sample months. The Fama–MacBeth regression loadings on CER in these periods are at least 0.6965, suggesting
hat one ‘‘unit’’ (which is close to one standard deviation of 0.7193 as in Table 1) increase in CER raises the equity premium by
9.65 bps per month (8.69% per annum) or more. Even in the full sample period, the CER effect is remarkable considering that CER
stimation only involves a small portion (20 percent in the current measurement scheme) of observations in the joint distribution
f stock and market returns, and reflects the risk conditional on a fairly small-probability event in the market — for the 1%-VaR
ase, there is a 99%-chance that such a rare event will not happen.

Panel B of Table 3 reports corresponding results after excluding the periods when market crashes actually happen and stocks with
igh CERs suffer from substantial losses. The purpose is to show that the compensation for bearing high CER completely comes from
he non-crash times. We use the 50 months with the largest market drops to approximate realized market crashes, and reexamine
he portfolio and univariate regression results for the CER effect after removing these market crash months from each market VaR
ubperiod as well as the full period. We first note that among these 50 crash months, 24 percent of them (i.e., 12 months) fall
nto the subperiod with the top 10 percent expected market VaRs, implying that our market VaR measure can effectively predict
rises that are eventually realized in the market. Excluding these realized crash months from this subperiod dramatically boosts

7 The 10th percentile of the total 996 predicted market VaRs during the full sample period of 1931–2013 should be around the 100th lowest value (note we
o not negate the VaR). However, since market VaRs are estimated using the 20 percent largest market drops in the previous 60 months on a rolling window
asis, for a series of adjacent estimation windows, it is possible that they all utilize the same market drop observations and thus have the same estimated VaR
alue. It turns out that the 100th, 101st, 102nd, and 103rd lowest market VaR estimates are the same. They are estimated from the adjacent estimation windows
nding in April to July of 1938. This explains why there are 103 observations in the subperiod of top 10 percent market crash months, as shown in Panel A.
imilar situation applies to the subperiod of top 20 percent market crash months.
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Table 3
Excess returns of CER portfolios and Fama–MacBeth coefficients of CER.

Panel A: Excess returns of CER portfolios

No. of months CER portfolios Fama–MacBeth

1 Low 2 3 4 5 High High - Low Coefficient of CER

Top 10 percent predicted market VaR months

CER

103

0.5218 0.9137 1.1472 1.3634 1.6729 1.1511
Excess return EW 2.9465 3.0208 3.4220 4.2091 4.8907 1.9443 1.6194

[2.73] [2.91]
Excess return VW 1.1663 2.0364 2.3833 3.0364 3.2966 2.1303 1.9949

[2.54] [2.78]

Top 20 percent predicted market VaR months

CER

202

0.4920 0.9068 1.1683 1.4188 1.7950 1.3030
Excess return EW 1.5714 1.6554 1.8140 2.4251 2.9253 1.3539 1.0908

[3.03] [3.05]
Excess return VW 0.6220 1.0736 1.2249 1.5787 1.8254 1.2034 1.0167

[2.46] [2.37]

Top 50 percent predicted market VaR months

CER

498

0.3939 0.8398 1.1445 1.4731 2.0121 1.6182
Excess return EW 1.2331 1.3920 1.5306 1.8626 2.2046 0.9715 0.6965

[3.19] [3.50]
Excess return VW 0.5337 0.7372 0.8284 1.0231 1.2618 0.7281 0.5518

[2.27] [2.41]

All months

CER

996

0.3215 0.7512 1.0712 1.4295 2.0417 1.7202
Excess return EW 0.9567 1.0448 1.0995 1.2719 1.4013 0.4446 0.3407

[2.47] [2.92]
Excess return VW 0.5847 0.7218 0.7495 0.7967 0.9059 0.3212 0.2740

[1.76] [2.16]

Panel B: Excess returns of CER portfolios after excluding months with realized market crashes

No. of months CER portfolios Fama–MacBeth

1 Low 2 3 4 5 High High - Low Coefficient of CER

Top 10 percent predicted market VaR months

CER

91

0.5284 0.9157 1.1470 1.3611 1.6689 1.1405
Excess return EW 4.7228 5.0279 5.8452 6.9871 8.0728 3.3501 2.7586

[2.73] [3.16]
Excess return VW 2.5997 3.6767 4.4911 5.4990 6.3582 3.7585 3.4918

[2.72] [3.04]

Top 20 percent predicted market VaR months

CER

182

0.4970 0.9096 1.1691 1.4182 1.7942 1.2972
Excess return EW 2.9893 3.2971 3.8137 4.7041 5.4729 2.4836 1.9518

[3.23] [3.47]

(continued on next page)

the high-minus-low return spread of CER portfolios to 335.01 bps and the Fama–MacBeth CER loading to 2.7586, both of which
are more than 70 percent larger than the corresponding values in Panel A, and exhibit similar or enhanced statistical significance.
Similar patterns are observed in other subperiods and the full period. Panel B thus provides further information regarding the source
of the CER premium documented in Panel A, and corroborates Rietz (1988) disaster-based equity risk premium proposition.

The above analyses are conducted on an EW base. We also report corresponding results on the VW base (in the ‘‘Excess return
VW’’ rows), and find that all the patterns observed in the EW case persist in the VW case. Briefly, the CER premia from both the
portfolio and regression analyses are significantly positive in each subperiod and also in the full period. Notably, we find no evidence
that the asset pricing effect of CER is always weaker in the VW scheme than in the EW scheme. For example, in Panel A, the VW
return spread between high and low CER portfolios and VW Fama–MacBeth regression coefficient of CER are both larger than those
in the EW case in the top 10 percent market VaR months (the first subperiod), although in other subperiods and the full period
the VW CER premia are smaller than the EW ones, but not by big margins. In Panel B, where realized market crash months are
excluded, the difference between VW and EW results becomes even smaller. VW portfolio results are stronger in the first subperiod
and slightly weaker in other subperiods and the full period, and VW regression results are stronger in the first two subperiods and
almost identical to the EW results in the other subperiod and the full period. Therefore, the asset pricing effect of CER is less likely
to be completely driven by small stocks. We will revisit the influence of firm size on CER pricing by explicitly controlling for market
capitalization in both portfolio and regression analyses in the next subsection.

A relevant concern is that the detected CER effect on asset prices may be confined to micro-cap or low-priced penny stocks for
which the microstructure issues may bring noise to the CER measurement. Although using monthly data to estimate CER largely
421
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Table 3 (continued).
Excess return VW 1.8178 2.4273 2.9645 3.5901 4.2777 2.4598 2.0687

[2.98] [2.98]

Top 50 percent predicted market VaR months

CER

462

0.3961 0.8413 1.1451 1.4729 2.0142 1.6181
Excess return EW 2.1167 2.4175 2.7603 3.2537 3.7834 1.6667 1.1544

[4.21] [4.20]
Excess return VW 1.2789 1.5913 1.8893 2.2966 2.8193 1.5404 1.1219

[3.71] [3.45]

All months

CER

946

0.3213 0.7499 1.0696 1.4280 2.0429 1.7216
Excess return EW 1.5644 1.7260 1.9020 2.1688 2.4074 0.8430 0.5960

[3.61] [3.80]
Excess return VW 1.1128 1.2980 1.4493 1.6150 1.9035 0.7907 0.5917

[3.32] [3.33]

Stocks are grouped into quintile portfolios each month based on their CER estimates. Panel A reports average CER levels and EW and VW monthly percentage
returns in excess of the risk-free rate (proxied by one-month U.S. T-bill rate) of the following month for each portfolio in subperiods of months ranked within
the top 10 percent, 20 percent, and 50 percent of all months in the 1931–2013 period according to the magnitude of predicted market 1%-VaR, as well as in the
full sample period. The column ‘‘High - Low’’ represents mean differences in monthly excess return between the highest and lowest CER quintile stocks, with the
associated Newey and West (1987) robust t -statistics reported in brackets. Coefficients of CER from EW and VW cross-sectional regressions of percentage excess
eturns on CER following the procedure in Fama and MacBeth (1973) are also reported, along with the Newey–West t -statistics in brackets. Sample size (no. of
onths) is indicated in the second column. Panel B presents corresponding portfolio and regression results after excluding the periods when market crashes are

ctually realized, i.e., the 50 months with the largest market downs.

itigates potential microstructural biases, and the VW analyses further allay the concern to some degree, we still conduct a set
f three additional tests to confirm the robustness of our results. First, we estimate CER by requiring that, for each stock, all its
onth-end market capitalizations in each estimation window are above the lowest NYSE size decile. Second, we estimate CER by

equiring a stock’s month-end price to be above $5 per share (a commonly used price threshold for penny stocks) in each estimation
indow. Third, we exclude all non-NYSE stocks from the CER estimation. We repeat the portfolio and regression analyses using

he new set of CER estimates, and report the top and bottom CER quintile excess returns, their differences, and the Fama–MacBeth
oefficients of CER in Table 4, for both EW and VW cases.

The results show that the CER premia are still significantly positive in all subperiods as well as the full period, and in both EW
nd VW schemes. For NYSE-only stocks, the premia are fairly close to those in Table 3. For the cases excluding small or penny
tocks, their magnitudes become smaller in general, but this phenomenon is not universal as the CER effects are mostly stronger
han in Table 3 in the subperiod of the largest market VaR months under the scenario excluding small stocks, especially when the
ealized market crash months are also excluded. Note that our data screening is rather aggressive since we require a stock’s size or
rice to be above the threshold (lowest NYSE size decile or $5) in every month of each estimation window. This approach ensures
hat all the data inputs for CER estimation are subject to minimal microstructure noise.8 Even in these strictly limited samples of
ruly large or high-priced stocks, the significantly positive relation between CER and expected stock returns still exists. Therefore,
he asset pricing effect of CER is not confined to small-cap or low-priced stocks.

The overall implication of Tables 3 and 4 results is that, investors assign substantial weight to systematic extreme risk and require
sizeable compensation to hold equities suffering from large losses during potential rare market downturns. Equivalently, they are
illing to sacrifice average returns of black swan hedging equities for the benefit of being protected in case of market plummets.
his effect is more significant when the potential market calamities are expected to be severe, and the reward for bearing CER more
han offsets the price drop that a stock may experience if the rare market disaster happens to be realized. Together, these findings,
or the first time in the literature, provide supporting evidence for the asset pricing model based on the safety-first theory.

.4. CER effect and commonly used risk variables

The CER measurement identifies stock risk conditional on the extreme downside part of market returns. It holds the potential
o be associated with market beta, which measures a stock’s sensitivity to the market for both extreme and non-extreme returns.
ER could also be affected by firm characteristics related to the economic forces underlying stocks’ different responses to market
rashes. To disentangle the CER premium from the cross-sectional return effects of commonly used risk variables, we examine CER’s
ssociations with market beta, as well as other firm characteristics known to influence asset returns including size, book-to-market
atio, momentum, and liquidity. We estimate beta as the stock and market return covariance scaled by the variance of market returns,
sing the previous 60 monthly observations to make it comparable to the CER measurement (using the two-stage portfolio-based beta
easures in Fama and French (1992) produces similar findings). Size is computed as market capitalization (in million U.S. dollars)

8 Another important reason to exclude stocks whose market capitalizations or prices are higher than the corresponding thresholds in part of but not all of the
stimation months is that, if we keep them in the sample and only exclude those small-cap or low price months, the number of observations in each 60-month
stimation window is much reduced, especially in the subset with the 20 percent largest market drops, which makes the CER measurement subject to much
stimation errors.
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Table 4
Excess returns of CER portfolios and Fama–MacBeth coefficients of CER within samples excluding small, low-priced, and non-NYSE stocks.

Panel A: Excess returns of CER portfolios

Exclude small stocks Exclude low-priced stocks NYSE stocks only

CER portfolios Fama–MacBeth CER portfolios Fama–MacBeth CER portfolios Fama–MacBeth

1 Low 5 High High - Low Coefficient of CER 1 Low 5 High High - Low Coefficient of CER 1 Low 5 High High - Low Coefficient of CER

Top 10 percent predicted market VaR months

Excess return EW 2.2521 4.2548 2.0027 1.5483 1.5331 3.0217 1.4886 1.2858 2.9462 4.9232 1.9770 1.6139
[2.45] [2.24] [2.03] [1.92] [2.70] [2.83]

Excess return VW 1.1466 3.3746 2.2280 1.9891 1.0397 2.8996 1.8599 1.8124 1.1714 3.3326 2.1612 2.0110
[2.60] [2.76] [3.02] [2.73] [2.57] [2.81]

Top 20 percent predicted market VaR months

Excess return EW 1.2703 2.3767 1.1065 0.8671 0.8557 1.7344 0.8787 0.7588 1.5963 2.7467 1.1504 0.9224
[2.26] [2.11] [2.22] [2.12] [2.31] [2.25]

Excess return VW 0.6301 1.8302 1.2001 1.0177 0.5307 1.5216 0.9909 0.9052 0.6281 1.8153 1.1872 1.0109
[2.41] [2.37] [2.93] [2.39] [2.38] [2.35]

Top 50 percent predicted market VaR months

Excess return EW 1.0122 1.7321 0.7199 0.5590 0.8712 1.4117 0.5406 0.4562 1.1645 1.9931 0.8286 0.6213
[2.57] [2.67] [2.32] [2.48] [2.97] [2.99]

Excess return VW 0.5385 1.1731 0.6347 0.5393 0.5218 1.0489 0.5271 0.4951 0.5371 1.1778 0.6408 0.5414
[2.07] [2.34] [2.04] [2.32] [2.22] [2.42]

All months

Excess return EW 0.8108 1.1786 0.3678 0.2877 0.7561 1.0211 0.2649 0.2298 0.8858 1.2982 0.4124 0.3181
[2.31] [2.45] [1.93] [2.19] [2.53] [2.69]

Excess return VW 0.5860 0.8734 0.2874 0.2745 0.5602 0.8113 0.2511 0.2601 0.5816 0.8609 0.2793 0.2778
[1.66] [2.16] [1.67] [2.20] [1.68] [2.24]

Panel B: Excess returns of CER portfolios after excluding months with realized market crashes

Exclude small stocks Exclude low-priced stocks NYSE stocks only

CER portfolios Fama–MacBeth CER portfolios Fama–MacBeth CER portfolios Fama–MacBeth

1 Low 5 High High - Low Coefficient of CER 1 Low 5 High High - Low Coefficient of CER 1 Low 5 High High - Low Coefficient of CER

Top 10 percent predicted market VaR months

Excess return EW 3.8449 7.4352 3.5903 2.9402 2.8532 5.8403 2.9871 2.7343 4.7309 8.1099 3.3790 2.7719
[2.54] [2.56] [2.53] [2.48] [2.66] [2.97]

Excess return VW 2.5546 6.3488 3.7942 3.4919 2.5476 5.5430 2.9954 3.2078 2.6274 6.3989 3.7715 3.5112
[2.76] [3.03] [3.57] [3.18] [2.73] [3.06]

Top 20 percent predicted market VaR months

Excess return EW 2.5752 4.9282 2.3530 1.8950 2.0054 4.0741 2.0687 1.8059 3.0068 5.2891 2.2823 1.8119
[2.81] [2.80] [3.02] [2.87] [2.75] [2.86]

Excess return VW 1.8028 4.2104 2.4076 2.0739 1.7409 3.6942 1.9533 1.8935 1.8310 4.2557 2.4247 2.0643
[3.04] [2.99] [3.95] [3.11] [2.92] [2.97]

Top 50 percent predicted market VaR months

Excess return EW 1.8411 3.2954 1.4543 1.1036 1.6176 2.8668 1.2492 1.0113 2.0375 3.5567 1.5191 1.1113
[3.66] [3.56] [3.79] [3.51] [3.84] [3.77]

Excess return VW 1.2751 2.6687 1.3936 1.1134 1.2742 2.4210 1.1468 1.0407 1.2805 2.6943 1.4138 1.1153
[3.56] [3.41] [3.98] [3.54] [3.59] [3.44]

All months

Excess return EW 1.3832 2.1717 0.7885 0.5914 1.2908 1.9569 0.6662 0.5356 1.4819 2.2960 0.8141 0.5956
[3.53] [3.47] [3.49] [3.37] [3.60] [3.62]

Excess return VW 1.1094 1.8287 0.7194 0.5931 1.0912 1.7036 0.6124 0.5635 1.1052 1.8267 0.7215 0.5957
[3.25] [3.35] [3.51] [3.48] [3.22] [3.37]

Stocks are grouped into CER quintiles each month. Panel A reports the top and bottom quintile EW and VW percentage excess returns of the following month, their differences, and the EW and
VW Fama–MacBeth coefficients of CER within samples excluding small, low-priced, and non-NYSE stocks, for the subperiods of different predicted market 1%-VaR months and the full sample period.
Panel B reports corresponding results after excluding the 50 largest market down months. Newey–West t -statistics are in brackets.

f the previous month-end. Book-to-market ratio (B/M), measured after June 1963, is the book value (obtained from COMPUSTAT
nnual files) divided by the market value of equity of the last fiscal year ending in the preceding calendar year. Momentum is proxied
y the past 11-month stock return after skipping the most recent month (Jegadeesh and Titman, 1993). We use the liquidity beta
i.e., the time-series regression loading on an aggregate liquidity innovation factor after controlling for Fama and French (1993)
hree factors using the previous 60 months’ monthly data) from Pastor and Stambaugh (2003) to measure firm liquidity. Liquidity
eta estimates are available from July 1963.9

9 We adopt liquidity beta to represent liquidity risk mainly because it is more of a systematic measure, in the sense that it is constructed from the connection
etween a firm-level factor and an aggregate factor. This construction is more consistent with the measurement of CER which is based on the joint distribution of
he firm and the market returns. Nevertheless, using the more firm-level liquidity measure as in Amihud (2002) does not change the main results and conclusions.
or example, using Amihud illiquidity measure estimated using monthly data on a 60-month rolling window basis, the average return spread between the top
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For the analyses from here on, to save space, we report EW results for the full sample period only, while noting that VW results are
consistent and qualitatively identical to EW results. Another reason to focus on the full sample results is that, although the stronger
pricing effect in subperiods of higher anticipated market crash risk holds for CER, there is no sufficient a priori basis for believing
that it is also the case for the size, book-to-market effects, and so on, in this section, as well as the comoments and co-crash-based
measures in the following sections. It is therefore fair to compare the asset pricing impacts of CER and other existing risk variables
based on the full sample period without differentiating high and low expected market crash times.10

Panel A of Table 5 reports average values of the common risk variables in CER quintile portfolios, together with the Pearson
correlation between CER and each variable. CER exhibits a strong and positive relation with beta, with a correlation coefficient of
0.6431. This is not surprising due to the CAPM’s relation with the Arzac–Bawa model and the fact that both measures reflect the
joint behavior of stock and market returns, with more or less focus on extremes. Small stocks tend to have higher CERs and are thus
less likely to hedge black swan risk in the market, but the decrease of firm size from low to high CER portfolios is not monotonic,
and the correlation coefficient between size and CER is only −0.0467. There is no obvious trend of B/M across CER portfolios. Past
winners with higher momentum values appear in the lowest CER portfolio, but the difference in momentum between high and low
CER quintiles is trivial and not statistically significant. This is understandable since the CER measure indicates losses conditional on
market plunges over the past 60 months, while momentum only reflects unconditional returns in the most recent year. Although high
CER stocks appear to be less liquid, the change of liquidity beta across CER portfolios is not monotonic but rather inverse U-shaped.
Overall, CER seems to capture quite unique information as compared with book-to-market, momentum, and liquidity. Meanwhile,
it also shows nontrivial associations with beta and firm size that can predict expected stock returns in the same direction as CER.
It is therefore necessary to check to what extent the CER premium can be influenced by beta and firm characteristic variables
(especially size) individually or collectively. We conduct the investigation in portfolio analyses controlling for other risk variables,
and multivariate regressions including different explanatory variables simultaneously.

In Table 5, Panel B, we first sort stocks into five portfolios according to each of the risk (control) variables. Within each portfolio,
we further form quintiles based on CER. The procedure is repeated every month, and the average excess return of each CER
quintile across control variable-sorted portfolios is computed. We report time-series average excess returns for CER quintiles and the
difference between the top and bottom quintiles, corresponding to each control variable. The results indicate that, after controlling
for beta and each firm characteristic variable, the return spreads between high and low CER quintiles remain positive, although with
more or less reduced magnitudes. Beta and size exercise relatively strong influences, but cannot explain a major part of the CER
premium. For example, the remaining CER premium after controlling for beta (size) is 30.10 (31.70) bps per month, only reduced
by less than one third from the 44.46 bps full-period average in Panel A of Table 3. Consistent with their weak associations with
CER, B/M, momentum, and liquidity beta show less influences on the CER pricing effect. Noticeably, under each controlling scheme,
the expected return still exhibits a monotonic increase from low to high CER portfolios, and the resulting CER premium becomes
even more significant as the t -values are larger than the corresponding one in Panel A. Therefore, there is no evidence showing that
beta and the selected firm characteristic variables can fully account for the CER premium. In particular, the weak influence of beta
on the CER effect hints that CER reflects more information about systematic riskiness beyond beta, consistent with the implication
of the Arzac–Bawa model that comoment measures can be incorporated into the more general RASF risk factor under additional
assumptions, an issue that we will examine in greater detail in Section 4.

The inferences from Panel B are reinforced in Panel C where we report characteristic adjusted returns for CER portfolios, following
the procedure in Daneil et al. (1997). Specifically, to adjust individual returns for size and B/M, we first sort stocks each month
independently into size and B/M quintiles (we obtain similar results when stocks are first sorted by size, and then sorted by B/M
within each size group). Then, we compute the average benchmark excess return for each of these 25 portfolios that is subtracted
from the excess returns of individual stocks belonging to the corresponding size-B/M portfolio. Excess returns adjusted this way
should have an expected value of zero if size and B/M completely describe the cross-sectional variation of expected returns. Evidence
from the first row of Panel C shows, however, that there is still a positive relation between CER and the adjusted returns: The size-
B/M adjusted return increases monotonically with CER, and the high-minus-low spread and univariate Fama–MacBeth coefficient of
CER (using adjusted returns as the dependent variable) are both positive and significant. Similar results are found after returns are
adjusted further by momentum or liquidity beta. To adjust the momentum effect in addition to size and B/M, we form 125 portfolios
based on independent quintile sorting according to size, BM, and momentum, and use the average returns of these portfolios as the
benchmarks to adjust individual stock returns. We report portfolio and regression analyses results using such three-variable adjusted
returns in the second row and the similarly constructed size-B/M-liquidity beta adjusted return results in the third row. In both
scenarios, we have findings consistent with the size-B/M adjusted case, namely, the positive premium to CER cannot be subsumed
by the pricing effects of firm size, book-to-market ratio, momentum, and liquidity.

To further confirm the explanatory power of CER for expected stock returns beyond that of beta and firm characteristic variables,
we run firm-level multivariate Fama and MacBeth (1973) regressions of expected excess returns on CER and other explanatory
variables. This allows us to simultaneously control for more factors than in the above return adjustment scheme. Regression models

and bottom CER quintiles after controlling for Amihud illiquidity in a conditional two-way sorting analysis is 37.45 bps per month with a Newey–West t -value
of 4.35. The average size-B/M-illiquidity adjusted return spread between the top and bottom CER quintiles is 29.17 bps with a Newey–West t -value of 1.86. The
Fama–MacBeth regression coefficient of CER after controlling for Amihud illiquidity only is 0.3400 (Newey–West t -value = 2.90), after controlling for Amihud
lliquidity together with beta, size, B/M, and momentum is 0.1395 (Newey–West t -value = 2.28). The Fama–MacBeth regression of size-B/M-illiquidity adjusted
eturns on CER has a CER coefficient of 0.1816 (Newey–West t -value = 2.10). Refer to the text for details of the analysis procedures.
10 Although not reported, results about CER pricing in subperiods of higher predicted market crash months are consistently and substantially stronger for all
nalyses to be conducted.
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Table 5
CER effect and commonly used risk variables.

Panel A: Common risk variables in CER portfolios

CER portfolios Correlation with

1 Low 2 3 4 5 High High - Low CER

Beta 0.6370 0.8934 1.1160 1.3480 1.6948 1.0579 0.6431
[34.38] p<0.0001

Size 1188.9100 1394.0000 1195.7200 881.8300 517.8700 −671.04 −0.0467
[−6.25] p<0.0001

B/M 0.8734 0.8545 0.8751 0.8889 0.8788 0.0054 0.0300
[0.44] p<0.0001

Momentum 0.1575 0.1520 0.1498 0.1525 0.1556 −0.0019 −0.0226
[−0.09] p<0.0001

Liquidity beta −0.0060 0.0010 0.0022 −0.0037 −0.0354 −0.0294 −0.0239
[−6.74] p<0.0001

Panel B: Excess returns of CER portfolios after controlling for common risk variables

CER portfolios

1 2 3 4 5 High - Low

Controlling for beta 1.1007 1.0483 1.0615 1.1630 1.4017 0.3010
[5.41]

Controlling for size 0.9744 1.1137 1.1769 1.2202 1.2913 0.3170
[3.78]

Controlling for B/M 0.7181 0.8065 0.8647 0.9460 1.1320 0.4140
[3.96]

Controlling for momentum 1.0042 1.0766 1.1221 1.2273 1.3353 0.3311
[4.67]

Controlling for liquidity beta 0.7452 0.8489 0.9244 1.0124 1.0815 0.3363
[3.30]

Panel C: Adjusted excess returns of CER portfolios

CER portfolios Fama–MacBeth

1 2 3 4 5 High - Low Coefficient of CER

Size-B/M adjusted −0.1755 −0.0587 0.0052 0.0552 0.1732 0.3486 0.2143
[1.95] [2.15]

Size-B/M-momentum adjusted −0.1319 −0.0482 0.0127 0.0418 0.1253 0.2572 0.1619
[2.12] [2.38]

Size-B/M-liquidity beta adjusted −0.1597 −0.0565 0.0070 0.0505 0.1579 0.3175 0.1962
[1.94] [2.17]

Panel D: Coefficients from Fama–MacBeth regressions with CER as one explanatory variable

Model CER Beta ln(Size) ln(B/M) Momentum Liquidity beta

1 0.3779 −0.0621
[3.32] [−0.40]

2 0.1701 0.0255 −0.1326 0.2019
[2.66] [0.21] [−3.31] [3.05]

3 0.1614 0.0032 −0.1499 0.1792 0.6470
[2.64] [0.03] [−3.94] [2.77] [4.69]

(continued on next page)

in Panel D show that, after additionally controlling for some or all of the risk variables (including beta, the logarithm of size log(size),
the logarithm of B/M log(B/M), momentum, and liquidity beta), CER retains its significantly positive relation with expected stock
returns cross-sectionally, consistent with the univariate regression result. Another observation from Panel D is that coefficients of
other risk variables retain their signs and significance levels as predicted and documented in relevant studies. This is especially
evident for the negative loading on log(size) and positive loadings on log(B/M) and momentum. The inference is that CER conveys
information about risk that is distinct from that delivered by existing risk variables.

3.5. Alpha, pricing error, and CER

The asset pricing implication of CER can be further manifested by analyzing alphas and pricing errors from other pricing models.
We report relevant results in Table 6. In Panel A, we run full-period time-series regressions with CER-sorted portfolio excess returns
as the dependent variable and commonly used asset pricing factors as regressors. We separately examine the CAPM, the 3-factor
model of Fama and French (1993), and the Carhart (1997) 4-factor model. Alphas from these models filter out influences of the
risk factors therein, and a positive association between alpha and CER would suggest that the pricing of CER is not attributable
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Table 5 (continued).
4 0.1638 0.0114 −0.1498 0.1775 0.6553 0.0263

[2.59] [0.10] [−3.98] [2.74] [4.79] [0.32]

In Panel A, full-period average values of commonly used risk variables including beta, size, book-to-market ratio (B/M), momentum, and liquidity beta are
reported for each CER quintile, along with the differences between the top and bottom quintiles. Beta is computed as the covariance between stock and market
returns divided by the variance of market returns, using the previous 60 months’ monthly data. Size is the market capitalization (in million U.S. dollars) of the
previous month-end. B/M is the book value divided by the market value of equity of the last fiscal year ending in the preceding calendar year. Momentum is
proxied by the past 11-month stock return after skipping the most recent month. Liquidity beta is the regression loading on an aggregate liquidity innovation
factor after controlling for Fama–French three factors based on the previous 60 months’ monthly data, following Pastor and Stambaugh (2003). For each risk
variable case, CER portfolios are formed each month with non-missing observations for that variable. The variable’s Pearson correlation coefficient with CER
is reported in the last column with the associated p-value. In Panel B, stocks are first sorted each month by each of the risk variables into five groups, and
within each group, further sorted into CER quintiles. Average monthly percentage excess returns across all risk variable groups are computed and the full-period
time-series averages of them are reported for the CER quintiles, together with the high-minus-low spreads. In the first row of Panel C, stocks are independently
sorted into size and B/M quintiles which form 25 portfolios each month. Average monthly excess return is computed for each of these 25 portfolios and is used as
the benchmark return that is subtracted from each individual stock’s excess return belonging to that particular portfolio. Full-period time-series average size-B/M
adjusted percentage excess returns are reported for CER quintiles, as well as the high-minus-low spread and the univariate Fama–MacBeth coefficient of CER
using adjusted percentage excess returns as the dependent variable. Individual stock returns are analogously adjusted by the benchmark returns of 125 portfolios
formed by independent size-B/M-momentum or size-B/M-liquidity beta quintile sorting, and corresponding portfolio and regression analyses results are reported
in the second and third rows of Panel C. In Panel D, multivariate Fama and MacBeth (1973) cross-sectional regressions are run each month with individual stock
percentage excess returns as the dependent variable. Among the explanatory variables are CER and commonly used risk variables (beta, the logarithm of size
ln(Size), the logarithm of B/M ln(B/M), momentum, and liquidity beta). Full-period time-series averages of the coefficients are reported. Newey–West t -statistics
are reported in brackets.

to other factors.11 We find that CAPM alpha shows a generally increasing trend from low CER to high CER portfolios, and the
igh-minus-low spread in alpha is significantly positive. Similar observations are obtained for the 3-factor and 4-factor alphas. The
sset pricing effects of other commonly used factors are generally independent of CER, as their factor loadings (MKTbeta, SMBbeta,

HMLbeta, UMDbeta) do not show monotonic changes across CER portfolios, and there is no clear direction of the trend in most cases.
This suggests that CER delivers risk information quite different from the existing factors, which is further confirmed in the pricing
error analysis below.

As demonstrated by Harvey and Siddique (2000), pricing errors of existing asset pricing models can be used to explore the pricing
of another factor, namely, whether this factor can explain what existing models do not. Following their approach, we detect pricing
errors of the CAPM by first running time-series regressions of stock excess returns on market excess returns based on a 60-month
rolling window, which yields estimate of the coefficient of market excess return for each stock. This estimated factor loading is
then used as the regressor in a cross-sectional regression with the following month’s excess stock returns as the dependent variable.
Pricing error is identified by the cross-sectional regression intercept. We compute average CAPM pricing error (as well as analogously
estimated 3-factor model and 4-factor model pricing errors) of stocks in each CER quintile each month, and report their full-period
means in Panel B of Table 6. Similar to alphas, pricing errors of all three models also exhibit an increasing pattern from low to
high CER portfolios, and the differences between the two extreme quintiles are statistically significant. Therefore, CER shows its
ability to describe the cross-sectional return variation not driven by pricing factors in existing models. This conclusion is reinforced
by observing larger pricing errors in periods of higher CER premia, as demonstrated in Panel C, where we partition the full sample
time into five subsamples according to return spread between the top and bottom CER quintiles. We find that subsamples with
higher (lower) CER premia have larger (smaller) pricing errors, and the correlations between CER premium and pricing error (not
reported in the table in the interest of brevity) are positive and significant in all models. Therefore, the periods when CER explains
more cross-sectional return variation appear to be the periods when other models have larger pricing errors, suggesting that CER
captures a special type of risk not reflected by existing asset pricing factors.

4. Conditional extreme risk and comoments

In this section, we investigate to what extent CER explains the premia to comoments (up to the fourth moment) and vice versa.
As shown in the online appendix, comoments are nested in a more general RASF risk factor given additional assumptions about
plausible distributional forms of the market tail. Hence, CER as a proxy for the RASF risk factor that is not restricted by any particular
distribution, should capture the effects of comoment risks and deliver additional systematic risk information, but comoments would
not completely reflect CER if the moments cannot fully describe the return distribution.

We first compare CER with comoment-based downside beta, coskewness, and cokurtosis, all of which have explanatory power
in the cross-section of stock returns. Although downside beta is not explicitly shown as a special case of the RASF pricing model,
it is a modified market beta and shares a similar covariance specification in its construction. More importantly, downside beta
exhibits a more significant pricing effect (Ang et al., 2006b) than the traditional beta (Fama and French, 1992). It is therefore more

11 Before carrying out the alpha tests, we filter out the effect of beta by computing monthly excess returns for quintile portfolios based on CER values
rthogonal to beta. The reason is that alpha represents the part of return not captured by the market-driven portion, as in the CAPM. The market-driven return
s determined by beta, which implies that high beta tends to drive down alpha. The negative association between beta and alpha is well-documented in the
iterature (Karceski, 2002; Baker et al., 2011; Frazzini and Pedersen, 2014). Since CER is highly correlated with beta, its relation with alpha tends to be biased
oward a negative one, which adds noise to our alpha analyses. Because our main interest is in the pricing of risk reflected in CER beyond that in beta, it is
ecessary to remove the ‘‘beta noise’’ to obtain a meaningful inference about the CER-alpha relation.
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Table 6
Alphas and pricing errors in CER portfolios.

Panel A: Alphas in CER portfolios

CER portfolios

1 Low 2 3 4 5 High High - low

CAPM alpha 0.2103 0.2814 0.3211 0.3191 0.4935 0.2832
[3.34]

MKTbeta 1.2917 1.1585 1.1741 1.2501 1.3336 0.0419

3-factor model alpha −0.0722 0.0681 0.1071 0.0903 0.1973 0.2695
[3.57]

MKTbeta 1.0494 0.9780 0.9910 1.0441 1.0492 −0.0003
SMBbeta 0.7904 0.5786 0.5951 0.7115 1.0518 0.2614
HMLbeta 0.4988 0.3851 0.3798 0.3707 0.4189 −0.0799

4-factor model alpha 0.0257 0.1417 0.2088 0.2588 0.3983 0.3726
[4.24]

MKTbeta 1.0259 0.9603 0.9666 1.0036 1.0009 −0.0250
SMBbeta 0.7883 0.5770 0.5929 0.7079 1.0474 0.2592
HMLbeta 0.4532 0.3508 0.3324 0.2922 0.3252 −0.1280
UMDbeta −0.1011 −0.0760 −0.1051 −0.1740 −0.2077 −0.1066

Panel B: Pricing errors in CER portfolios

CER portfolios

1 Low 2 3 4 5 High High - Low

CAPM pricing error 0.7511 1.0291 1.0221 1.5482 1.7708 1.0197
[3.80]

3-factor model pricing error 0.7704 1.0704 1.0959 1.8271 1.8624 1.0920
[3.73]

4-factor model pricing error 0.7183 1.0652 1.0782 1.8096 1.8513 1.1331
[3.80]

Panel C: Pricing errors and CER premia

CER premium subsamples

1 Low 2 3 4 5 High High - Low

CER premium −6.0527 −1.8230 0.0209 1.8529 8.2575 14.3102
CAPM pricing error −0.9341 0.4391 1.0065 1.4600 2.5434 3.4774

[7.12]
3-factor model pricing error −1.1327 0.4422 0.9252 1.5096 2.8714 4.0042

[8.57]
4-factor model pricing error −1.1042 0.4595 0.9178 1.4902 2.7264 3.8306

[8.32]

In Panel A, monthly excess returns for quintile portfolios based on CER values orthogonal to beta are computed, and then are regressed on excess market returns
(MKT) according to the CAPM, or on the three factors of Fama and French (1993) (MKT, SMB, HML), or on the four factors of Carhart (1997) (MKT, SMB,
HML, UMD) over the full sample period. For each CER quintile, the time-series regression intercept (in percentage) is reported as CAPM alpha, 3-factor model
alpha, or 4-factor model alpha, along with the factor coefficients (in percentage) denoted by MKTbeta, SMBbeta, HMLbeta, and UMDbeta. The corresponding alphas
and factor loadings for the high-minus-low portfolios are also reported. In Panel B, pricing error of the CAPM, the 3-factor model, or the 4-factor model is
estimated each month as the intercept of a cross-sectional regression of excess stock returns on factor loading(s). The factor loading(s) is(are) the coefficient(s)
on the model factor(s) (MKT, SMB, HML, UMD) from a time-series regression of stock excess returns on pricing factor(s) using the previous 60 months’ monthly
data. The full-period time-series averages (in percentage) of CAPM pricing error, 3-factor model pricing error, and 4-factor model pricing error are reported for each
CER quintile as well as the high-minus-low portfolio. In Panels A and B, Newey–West t -statistics are reported in brackets. In Panel C, the full sample period is
divided into five subsamples according to CER premium, i.e., the return spread between the top and bottom CER quintiles. Average CAPM pricing error, 3-factor
model pricing error, and 4-factor model pricing error, as well as CER premium (all in percentage) are reported for each CER premium subsample. Corresponding
differences between high and low CER premium subsamples (and their t -statistics in brackets) are also reported.

meaningful to examine CER’s influence on downside beta, which complements the relevant CER-market beta analysis in Section 3.
For coskewness and cokurtosis measures, we follow the existing literature for their constructions (Kraus and Litzenberger, 1976;
Friend and Westerfield, 1980; Barone-Adesi, 1985; Fang and Lai, 1997; Chung et al., 2006; Jurczenko and Maillet, 2006), which is
in line with the Arzac–Bawa model implication.

Consistent with the CER measurement, we estimate these comoment-based measures using 60 months’ monthly return data on a
rolling window basis. Downside beta is the ratio of covariance between stock and market returns to the variance of market returns,
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conditional on the market returns being less than the sample mean. Coskewness is the covariance between stock returns and squared
market returns scaled by the third power of the standard deviation of market returns. Cokurtosis is similarly calculated by dividing
the covariance between stock returns and cubed market returns by squared market return variance.12

Panel A of Table 7 reports average values of downside beta, coskewness, and cokurtosis for the top and bottom CER quintile
portfolios and the differences between them. High CER is associated with high downside beta, low coskewness, and high cokurtosis.
Their differences between high and low CER quintiles are salient and highly significant, and their Pearson correlations with CER
all have magnitudes higher than 0.37. These relations point to the same risk premium direction as CER because downside beta and
cokurtosis are positively priced and coskewness is negatively priced. This is generally confirmed by the portfolio and regression
analyses results in Panel B. The full-period average high-minus-low quintile return spreads for downside beta, coskewness, and
cokurtosis are 31.78, −34.72, and 34.26 bps per month, respectively, and their univariate Fama–MacBeth regression coefficients are
0.1782, −0.1222, and 0.0272, respectively. Given the overlapping economic implications of these comoment-based measures with
CER, it is necessary to delineate their potential interactions in asset pricing.

In Panels C and D, we explore the mutual impacts between downside beta and CER in their effects on the cross-section of stock
returns. To examine how downside beta influences CER pricing, we categorize stocks each month into five groups according to their
downside beta estimates and further assign stocks into CER quintile portfolios. We compute the cross-downside beta mean excess
return for each CER portfolio, and report the values for the top and bottom quintiles, as well as the difference between them, in the
left part of Panel C. We also report Fama–MacBeth regression coefficient of CER after downside beta is controlled. Clearly, downside
beta does not exert a dominating influence over the CER premium since CER is still positively associated with expected stock returns
after controlling for downside beta. The high-minus-low return spread for CER across all downside beta groups is 31.11 bps per
month, only reduced by about 13 bps from the baseline result (44.46 bps) in Panel A of Table 3. The Fama–MacBeth coefficient of
CER becomes even larger after controlling for downside beta: It increases from 0.3407 before downside beta is controlled to 0.5346
after downside beta is controlled in the regression. Both the return spread and the regression coefficient of CER after controlling for
downside beta are statistically significant, with Newey–West t -statistics of 4.39 and 2.65, respectively.

In dramatic contrast, the pricing effect of downside beta disappears after controlling for CER, as shown in the corresponding left
part of Panel D, in which we first create CER quintiles and then form five downside beta portfolios within each CER quintile.
The cross-CER high-minus-low return spread for downside beta gives a negative and insignificant difference of −6.42 bps per
month, which is reduced from the 31.78 bps (Panel B) before CER is controlled. The message from the Fama–MacBeth regression is
equally clear and consistent: The significantly positive coefficient of downside beta in the univariate regression in Panel B becomes
insignificantly negative after CER is included in the regressor list. These findings suggest that the asset pricing effect of downside
beta may be largely due to its reflection of the more general RASF risk factor proxied by CER. Risk information embedded in CER
goes beyond that in the comoment-based risk measure.

We conduct two-way sorting and bivariate Fama–MacBeth regression analyses in a similar manner to study CER premium’s
interactions with coskewness and cokurtosis in the middle and right parts of Panels C and D, and obtain similar results. To summarize,
coskewness and cokurtosis cannot subsume the pricing of CER, but CER can largely explain the premia to coskewness and cokurtosis.
This is especially true for cokurtosis. As shown in the right part of Panel C, the average return spread between the top and bottom
CER quintiles across cokurtosis portfolios is positive and significant. In contrast, the average high-minus-low return spread for
cokurtosis after controlling for CER is −4.86 bps in the right part of Panel D, a large drop from the 34.26 bps (Panel B) before
CER is controlled. Regression analyses consistently show that controlling for CER drives the cokurtosis coefficient from positive to
negative, while controlling for cokurtosis does not reduce the CER coefficient in either magnitude or significance level.

Comparable pictures, though slightly different, are observed from the middle parts of Panels C and D for the CER-coskewness
interaction. The CER premium proxied by the high-minus-low quintile return difference remains significantly positive after being
averaged across the five coskewness portfolios, although the magnitude is reduced by 54 percent to 20.49 bps from 44.46 bps before
coskewness is controlled. On the other hand, CER exhibits relatively stronger explanatory power on the coskewness premium because
the average cross-CER high-minus-low return spread for coskewness is reduced to −6.18 bps from the baseline number −34.72 bps
in Panel B, that is, an 82-percent drop in magnitude. CER’s influence on coskewness is equally substantial in the cross-sectional
regressions. Bivariate Fama–MacBeth regressions reveal that the loading on coskewness is reduced by 84 percent in magnitude
(from −0.1222 to −0.0190) after CER is controlled, and controlling for coskewness decreases the CER coefficient by only 19 percent
(from 0.3407 to 0.2770).13

A final observation, although not reported in the table, is that CER loadings in the multivariate regressions remain significant
even after further controls, including beta, size, B/M, momentum, and liquidity beta, are added in addition to downside beta,

12 Some studies like Harvey and Siddique (2000) and Ang et al. (2006a) include the standard deviation of stock returns in a modified denominator to scale
he numerator when estimating coskewness or cokurtosis, which makes the denominator uncommon to different stocks. We do not adopt this modification in our
nalyses because it is inconsistent with the CER measurement which has a common denominator. Nevertheless, using the modified coskewness and cokurtosis
easures does not qualitatively change our results.
13 Considering that the strong correlations between CER and comoment measures may not adequately disentangle the asset pricing inference of CER from

omoments (and vice versa) in the simple two-way sorting scheme, when we check the mutual influences between CER and each of the comoment measures,
e also use CER values orthogonal to the comoment (downside beta, coskewness, or cokurtosis) to form quintiles within each comoment portfolio, and use

omoment values orthogonal to CER to form quintiles within each CER portfolio. We obtain similar results under this orthogonalization scheme. Specifically,
he high-minus-low return spreads of CER quintiles after controlling for downside beta, coskewness, and cokurtosis are 31.12 bps (Newey–West t -value = 4.35),

14.66 bps (Newey–West t -value = 2.01), and 30.47 bps (Newey–West t -value = 5.16), respectively, while the high-minus-low return spreads of downside beta,
oskewness, and cokurtosis quintiles after controlling for CER are −10.56 bps (Newey–West t -value = −1.93), −3.19 bps (Newey–West t -value = −0.50), and
12.07 bps (Newey–West t -value = −1.97), respectively.
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Table 7
Mutual influences between CER and downside beta, coskewness, or cokurtosis.

Panel A: Downside beta, coskewness, cokurtosis in CER-sorted portfolios

Downside Beta in CER portfolios Correlation with Coskewness in CER portfolios Correlation with Cokurtosis in CER portfolios Correlation with

1 Low 5 High High - Low CER 1 Low 5 High High - Low CER 1 Low 5 High High - Low CER

0.4922 1.9870 1.4947 0.6777 −0.2346 −1.2805 −1.0459 −0.3707 2.6598 8.1678 5.5081 0.4114
[35.67] p<0.0001 [−12.80] p<0.0001 [15.60] p<0.0001

Panel B: Excess returns in downside beta-, coskewness-, cokurtosis-sorted portfolios

Downside beta portfolios Fama–MacBeth Coskewness portfolios Fama–MacBeth Cokurtosis portfolios Fama–MacBeth

1 Low 5 High High - Low Coefficient 1 Low 5 High High - Low Coefficient 1 Low 5 High High - Low Coefficient

1.0081 1.3259 0.3178 0.1782 1.3581 1.0109 −0.3472 −0.1222 0.9491 1.2918 0.3426 0.0272
[2.02] [2.32] [−1.94] [−1.14] [1.89] [0.86]

Panel C: Excess returns in CER-sorted portfolios after controlling for downside beta, coskewness, cokurtosis

Controlling for downside beta Fama–MacBeth Controlling for coskewness Fama–MacBeth Controlling for cokurtosis Fama–MacBeth

1 Low 5 High High - Low Coefficient 1 Low 5 High High - Low Coefficient 1 Low 5 High High - Low Coefficient

1.0864 1.3975 0.3111 0.5346 1.1315 1.3363 0.2049 0.2770 1.0839 1.3857 0.3018 0.4134
[4.39] [2.65] [2.83] [2.06] [4.96] [3.32]

Panel D: Excess returns in downside beta-, coskewness-, cokurtosis-sorted portfolios after controlling for CER

Downside beta portfolios Fama–MacBeth Coskewness portfolios Fama–MacBeth Cokurtosis portfolios Fama–MacBeth

1 Low 5 High High - Low Coefficient 1 Low 5 High High - Low Coefficient 1 Low 5 High High - Low Coefficient

1.2664 1.2021 −0.0642 −0.1799 1.2464 1.1846 −0.0618 −0.0190 1.2217 1.1730 −0.0486 −0.0221
[−1.16] [−1.54] [−0.96] [−0.19] [−0.79] [−0.70]

In Panel A, full-period average values of downside beta, coskewness, and cokurtosis are reported for the top and bottom CER quintiles, along with the differences
between them. Downside beta is the ratio of covariance between stock and market returns to the variance of market returns, conditional on the market returns
being less than the sample mean. Coskewness is the covariance between stock returns and squared market returns scaled by the third power of the standard
deviation of market returns, and cokurtosis is the covariance between stock returns and cubed market returns scaled by squared market return variance. All
these estimates are based on the previous 60 months’ monthly data. For the case of each measure, CER portfolios are formed each month with non-missing
observations for that measure. The measure’s Pearson correlation coefficient with CER is reported in the last column with the associated p-value. Panel B reports
full-period time-series average monthly percentage excess returns for the top and bottom quintiles (and their difference) formed each month on downside beta,
coskewness, or cokurtosis, as well as the univariate Fama–MacBeth coefficient of each of them. In Panel C, stocks are first sorted each month into five groups
based on downside beta, coskewness, or cokurtosis, and within each group, further sorted into CER quintiles. Average monthly percentage excess returns across
all downside beta, coskewness, or cokurtosis groups are computed and the full-period time-series averages of them are reported for the top and bottom CER
quintiles, together with the high-minus-low spreads. Also reported is bivariate Fama–MacBeth regression coefficient of CER after downside beta, coskewness, or
cokurtosis is controlled. Panel D reports corresponding two-way sorting analysis results based on first sorting on CER and then on downside beta, coskewness,
or cokurtosis, and the Fama–MacBeth regression coefficient of downside beta, coskewness, or cokurtosis after CER is controlled. Newey–West t -statistics are
reported in brackets.

coskewness, or cokurtosis.14 This highlights the distinct risk information CER captures and the robustness in the pricing of such
isk. Overall, Table 7 shows that comoments represented by downside beta, coskewness, and cokurtosis, although highly correlated
ith CER, cannot subsume the CER premium, while CER can explain a major part of the premia to the comoment measures. These

indings help achieve a better understanding of the asset pricing effects of downside beta, coskewness, and cokurtosis that have
rawn extensive attention in the literature.

. Conditional extreme risk and tail dependence

An important attribute of CER is its ability to signify hedging potential against extreme market risk, which differentiates it from
ail dependence measures that mainly capture co-crash risk. In this section, we focus on how the black swan hedging aspect of CER
anifests when tail dependence is less effective in reflecting such property, and how important black swan hedging is for the pricing

f CER.
Tail dependence is the building block for existing systematic tail risk studies and is defined as the probability of all components

f a multi-dimensional process being extreme simultaneously. Within our two-dimensional setting of individual stock i’s return 𝑅𝑖
and the market return 𝑅𝑀 , the idea of tail dependence can be summarized in the following expression:

𝑇𝐷𝐶𝑖𝑀 = Pr
(

𝑅𝑖 < 𝑑𝛼,𝑖|𝑅𝑀 < 𝑑𝛼,𝑀
)

, (10)

14 CER coefficients are 0.1613 (Newey–West t -value = 2.32), 0.1297 (Newey–West t -value = 1.81), and 0.1756 (Newey–West t -value = 2.38) in the multivariate
egressions controlling for downside beta, coskewness, and cokurtosis, respectively, after further controlling for the beta, size, B/M, momentum, and liquidity
ffects.
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where 𝑇𝐷𝐶 𝑖𝑀 refers to tail dependence coefficient between stock i and the market M, 𝑑𝛼𝑖 and 𝑑𝛼𝑀 represent sufficiently
low threshold returns represented by a low 𝛼-quantile of the stock and market return distributions (e.g., 𝛼-probability VaRs),
respectively.15 Obviously, this measure indicates the probability of the stock return dropping below a low threshold given that
the market also drops below a low threshold. In the prospect that only the market crashes but the individual stock does not, tail
dependence is close to zero or cannot be reliably estimated due to the lack of co-crash observations, and it is precisely the time
when CER more prominently reflects the expected hedge the stock can provide against the market black swan.

The literature largely adopts copula methods to estimate tail dependence.16 To be comparable with the CER measurement which
is based on the limiting laws of extreme values, we estimate tail dependence by the Gumbel copula incorporated in the bivariate EVT
model, a specification belonging to the parametric extreme value copula family. Tail dependence constructed this way highlights
extreme risks and ensures the asymptotic property consistent with that of CER.17

Specifically, we use the bivariate logistic extreme value distribution to estimate tail dependence, following Longin and Solnik
2001) and Poon et al. (2004). These studies show that the asymptotic version of tail dependence in Eq. (10) can be expressed as

𝑇𝐷𝐶𝑖𝑀 = 2 − 2�̂�𝑖 , 0 ≤ �̂�𝑖 ≤ 1, (11)

and �̂�𝑖 is the maximum likelihood estimate of 𝛾𝑖 in the joint co-exceedance distribution
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, (12)

here 𝐹𝑁𝑅𝑖
(𝑁𝑅𝑖) and 𝐹𝑁𝑅𝑀

(𝑁𝑅𝑀 ) are marginal distributions with GPD tails of negated log returns for stock i and the market
, respectively. We adopt the Longin–Solnik approach and use negated monthly return data left-censored at a high threshold for

oth the stock and the market in the construction of the likelihood function. Consistent with the CER measurement, we use a
0-month rolling window, set the top 20th percentile as the threshold, and require at least five stock-market pair observations in
he co-exceedance subset for valid tail dependence estimation.18

We first check the relation between tail dependence and CER in Panel A of Table 8. The upper part of Panel A suggests a positive
ssociation between TDC and CER in the subsample of stocks with valid tail dependence estimates. Yet this association deserves
urther scrutiny. The values of CER have a large range from 0.4407 in the bottom CER quintile to 2.1111 in the top CER quintile,
.e., top quintile CER value is almost five times of that in the bottom quintile. In addition, in the bottom quintile, average CER is
uch lower than one, meaning that these stocks exhibit strong black swan hedging potential: They drop much less than the market
uring market plummets. As a comparison, average CER in the top TDC quintile (1.3405) is only 14 percent higher than that in the
ottom TDC quintile (1.1733), and more importantly, both top and bottom TDC quintiles maintain a relatively high level of CER
higher than one). The evidence implies that, among the restricted subsample with valid tail dependence estimates, tail dependence
ay not effectively indicate stocks’ black swan hedging attribute. This is consistent with the estimation procedure of tail dependence
here estimates can only be obtained for stocks with sufficient stock-market co-exceedance data. In this case, co-crash risk is more
ertinent than black swan hedging potential. Thus, tail dependence’s inefficacy of reflecting the black swan hedging property is
etermined by its construct, and stocks with higher degrees of black swan hedging ability are more likely to appear in the cases
here tail dependence estimates cannot be obtained, as we demonstrate below.

Unlike tail dependence, CER estimation does not require co-crash data (the stock does not have to crash), thus we can always
ave CER estimates even when tail dependence estimates are not available. It turns out that there is a nontrivial portion (37 percent)
f sample stocks without valid tail dependence estimates due to the lack of co-exceedance observations. As shown in the lower part
f Panel A, where CER levels are reported for the subsample without tail dependence estimates, stocks have much lower CERs
ompared with those in the subsample with TDC estimates (the upper part of Panel A). This is especially true for the bottom CER
uintile where the average CER level for stocks without valid TDC estimates is only 0.1219, more than 70 percent lower than
he corresponding level of 0.4407 among stocks with TDC estimates. Therefore, stocks that are associated with more salient black
wan hedging feature are among those without tail dependence estimates. Hence, by design, tail dependence cannot reflect a stock’s
otential ability to hedge the market crash as adequately as CER. This is a key difference between our CER measure and the tail
ependence measure in existing studies.

The fact that CER reflects black swan hedging better than tail dependence is critical because we find that black swan hedging
lays an important role in asset pricing, which not only has material contribution to the CER premium, but also helps explain why
ail dependence measures generally fail to exhibit a significant association with expected stock returns, as shown in most of the
elevant studies in the literature.19 To clarify this, we report the portfolio and regression analyses results for the asset pricing effects

15 We are grateful to the referee for suggesting the notation of TDC.
16 A copula is a multivariate probability function with uniform marginal distributions. The joint distribution of a random vector of variables contains both

he marginal behavior and the dependence structure, and the copula approach isolates the description of the dependence structure.
17 The extreme value copula family involves generalized extreme value distributions for margins that arise as the limit distributions for componentwise
axima, and the copula function proposed by Gumbel (1961). DiTraglia and Gerlach (2013) adopt a similar approach. For more references about extreme value
ependence and extreme value copula, please refer to Poon et al. (2004) and McNeil et al. (2005).
18 We follow Frahm et al.’s (2005) suggestion and use extremal data exceeding a threshold to estimate tail dependence without referring to other observations
ot belonging to the extremal set, since our tail dependence estimation method is of an extreme value copula type.
19 Among the five tail dependence asset pricing studies (and the only five in the literature so far, to our best knowledge) by Kole and Verbeek (2006), Spitzer

2006), DiTraglia and Gerlach (2013), Chabi-Yo et al. (2015), and Van Oordt and Zhou (2016), only Chabi-Yo et al. (2015) document a significant premium
o tail dependence measured by a weighted average copula carefully chosen from a total of 64 combinations of various copulas. Among other studies, Kole
nd Verbeek (2006) find no consistent evidence of a significantly positive tail dependence-expected return relation, while Spitzer’s (2006), and DiTraglia and
erlach’s (2013), and Van Oordt and Zhou’s (2016) results even show underperformances of portfolios with higher tail dependence-based measures.
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Table 8
CER and tail dependence.

Panel A: CER levels of CER- and TDC-sorted portfolios

CER portfolios TDC portfolios

1 Low 5 High High - Low 1 Low 5 High High - Low

Subsample with valid TDC estimates

0.4407 2.1111 1.6703 1.1733 1.3405 0.1672
[45.20] [11.68]

Subsample without valid TDC estimates

0.1219 1.7611 1.6392 N/A N/A N/A
[43.51]

Panel B: Excess returns in TDC-sorted portfolios and in CER-sorted portfolios before and after controlling for TDC

CER portfolios Fama–MacBeth TDC portfolios Fama–MacBeth CER portfolios after controlling for TDC Fama–MacBeth

1 Low 5 High High - Low Coefficient 1 Low 5 High High - Low Coefficient 1 Low 5 High High - Low Coefficient

Subsample with valid TDC estimates

0.9377 1.3679 0.4302 0.3462 1.1499 1.0844 −0.0656 −0.0411 0.9145 1.3924 0.4780 0.3621
2.27 [2.71] [−1.05] [−0.42] [4.95] [2.74]

Subsample without valid TDC estimates

1.0629 1.9411 0.8783 0.6882 N/A N/A N/A N/A N/A N/A N/A N/A
3.37 [3.23]

On the left side of Panel A, average values of CER are reported for the top and bottom CER quintiles, along with their differences, for the two subsamples
with and without valid TDC estimates. TDC is proxied by the probability that both stock and market returns are approaching extreme, following an extreme
value copula method in Longin and Solnik (2001). TDC is estimated based on the previous 60 months’ monthly data and requires at least five stock-market
pair observations in a co-exceedance sample beyond the top 20th percentiles of both the negated market and stock returns. The right side of Panel A reports
average CER values for the top and bottom TDC quintiles (and their difference) within the subsample with valid TDC estimates. The left part of Panel B reports
average monthly percentage excess returns for the top and bottom CER quintiles (and the differences between them), as well as the univariate Fama–MacBeth
coefficients of CER, for the two subsamples with and without valid TDC estimates. The middle part of Panel B reports average monthly percentage excess returns
for the top and bottom TDC quintiles (and their difference), along with the univariate Fama–MacBeth coefficient of TDC, within the subsample with valid TDC
estimates. In the right part of Panel B, stocks with valid TDC estimates are first sorted each month by TDC into five groups, and within each group, further
sorted into CER quintiles. Average monthly percentage excess returns across all TDC groups are computed and the time-series averages of them are reported for
the top and bottom CER quintiles, together with the high-minus-low spread. Also reported is bivariate Fama–MacBeth regression coefficient of CER after TDC is
controlled. Newey–West t -statistics are reported in brackets.

of tail dependence (if available) and CER (for both subsamples with and without TDC estimates) in Panel B. We first confirm that the
variation of excess returns across tail dependence portfolios is rather modest, as the return difference between the top and bottom
TDC quintiles is only −6.56 bps (Newey–West t -statistic = −1.05). This result is echoed by the univariate Fama–MacBeth regression
oefficient of −0.0411 (t -statistic = −0.42) for TDC. The insignificant and seemingly negative association between TDC and stock
eturns is, again, consistent with the majority of the empirical findings about the tail dependence-return relation. In contrast, the
eturn difference between the top and bottom CER quintiles and the univariate Fama–MacBeth regression loading on CER are both
ositive and statistically significant in the subsample with tail dependence estimates, consistent with the full sample results. This
sset pricing effect of CER persists after controlling for tail dependence in the two-way sorting portfolio analysis and in the bivariate
ama–MacBeth regression.20

More importantly, by comparing across the upper and lower parts of Panel B, we find that the CER premium is much larger
nd more significant in the without-TDC subsample (high-minus-low return spread = 87.84 bps, Newey–West t -statistic = 3.37)

than in the with-TDC subsample (high-minus-low return spread = 43.02 bps, Newey–West t -statistic = 2.27). This implies that the
CER pricing effect manifests more strongly among stocks with lower CERs and greater black swan hedging potential. Consistently,
in Fama–MacBeth regressions, CER exhibits an average coefficient of 0.6882 (Newey–West t -statistic = 3.23) in the without-TDC
subsample, as compared with the coefficient of 0.3462 (Newey–West t -statistic = 2.71) in the with-TDC subsample. Therefore, the
impact of CER on expected stock returns in the subsample without tail dependence estimates is twice as large as in the subsample
with tail dependence estimates. As stocks with low CERs and thus clear black swan hedging feature mostly appear in the without-TDC
subsample, these results imply that much of the CER premium is likely to be attributed to a more prominent presence of black swan
hedging characteristics. Since tail dependence does not adequately capture the black swan hedging potential, this observation also
partially explains why the risk premium to tail dependence-based measures appears absent.21

20 Fama–MacBeth coefficient of CER keeps significantly positive even after beta, size, B/M, momentum, and liquidity beta are further controlled together
ith tail dependence: The coefficient is 0.1146, and the associated Newey–West t -statistic is 1.81.
21 A recent study by Van Oordt and Zhou (2016) augment tail dependence by marginal distribution tails to generate a systematic tail risk measure. Although

he marginal distributions deliver extra information beyond tail dependence, they only focus on extreme tails that are less informative for the black swan hedging
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6. Robustness

6.1. Rarity of extreme market plummets

In the CER measurement, both the marginal tail and the Heffernan–Tawn dependence structure are based on asymptotic
arguments. The GPD model enables extrapolation beyond data in the sample, which facilitates the estimation of the proxy for a
very rare event but, at the same time, implies that the estimate is only an approximation. It is therefore important to test the
sensitivities of our results to the extreme event approximation. We mainly use the expected return corresponding to the 1%-VaR
as a measure for the severity of potential rare market drops. As a robustness check, we increase or decrease the rarity of extreme
market drops by changing the probability level of VaR within the range of 0.5% to 5%. A lower-probability VaR indicates a rarer
event and more extremeness, and a higher-probability VaR implies the opposite. Panel A of Table 9 reports selected summary
statistics of CER measure and its components (𝐹 𝑖𝑟𝑚𝑅𝑒𝑡|𝑀𝑘𝑡𝑉 𝑎𝑅 and MktVaR) based on market VaRs of 0.5%, 1%, 2%, and 5%.
Both market VaR and the corresponding conditional stock loss become more severe when the extreme market crash becomes rarer,
as their average values are more negative from the 5%-VaR case to the 0.5%-VaR case. In contrast, CER level appears lower in
more extreme market calamities, which may be due to stocks with stronger black swan hedging ability against larger crashes. This
conjecture is supported by the fact that, while the maximum value of CER slightly (and non-monotonically) decreases from the
5%-VaR to the 0.5%-VaR cases, the minimum CER, which is negative, exhibits a large increase in magnitude, i.e., becomes more
negative.22 CERs based on different market VaRs are highly correlated with each other, with Pearson correlations no less than 0.7433
and Spearman correlations no less than 0.7668, as shown in the lower-left and upper-right triangles in Panel B, respectively. CERs
of the adjacent VaR levels all have correlation coefficients higher than 0.91. Thus different VaR schemes yield consistent inferences
regarding the relative CER levels among individual stocks. In Panel C, we find a consistently significant and positive CER pricing
effect in all schemes of different VaR probabilities. Moreover, there is an increasing trend in the high-minus-low return spread of
CER from the 5%-VaR to the 0.5%-VaR scenarios. The univariate Fama–MacBeth regressions show a similar pattern except that the
0.5%-VaR case does not have the largest coefficient of CER. This evidence suggests that the asset pricing effect of CER holds under
different extreme market down conditions with higher or lower rarities, and that investors care more about the impacts of extreme
market events that are rarer and more devastating.

6.2. Threshold levels in GPD tail and Heffernan–Tawn dependence measurements

As in empirical estimations of any asymptotic model, the characterization of an observation as being extreme is subject to the
trade-off between bias and variance. In the cases of the GPD tail and Heffernan–Tawn dependence measurements, for the selection
of extreme right tail observations, low thresholds generate more sample observations, but are more likely to violate the asymptotic
basis; High thresholds give more extreme but smaller sample sizes, which increases the estimation variance. To facilitate the CER
estimation and reduce computational workload, we employ the same 20th percentile benchmark levels for both tail and dependence
estimations in the main part of this paper. To ensure that the results are robust to different benchmarking schemes, we alternatively
adopt the 15th and 25th percentiles as thresholds for estimating GPD tails or Heffernan–Tawn dependence, and require a minimum
of eight and 12 observations for estimations under the two schemes, respectively. We use symmetric thresholds for the left and
right tails, but do not force the benchmarks for GPD and dependence estimations to be the same. In this way, along with the 20th
percentile threshold, we have a total of nine combinations of benchmarks. We estimate CER under each combination, and report
the full-period mean CER values, as well as the average high-minus-low return spreads and univariate Fama–MacBeth regression
coefficients of CER in Panels A, B, and C of Table 10, respectively.

The overall findings indicate that CER estimate and its effect on cross-sectional stock returns are generally stable. Average CER
levels are between 1.1037 and 1.1439 in Panel A, and become slightly smaller as the percentile threshold for dependence estimation
decreases, implying that using more extreme market loss observations entails lower CER estimates. This echoes the evidence in Panel
A of Table 9 that CERs based on more extreme market VaRs tend to be lower. There is no obvious trend for the pricing effect of
CER across different threshold schemes. The majority of average CER premia from the portfolio analysis in Panel B of Table 10 are
between 40 and 49 bps per month. The average cross-sectional regression coefficients of CER in Panel C are mostly around 0.3400,
with the highest at 0.3625 and the lowest at 0.3176. Thus, our main conclusion of a positive relation between CER and expected
stock returns holds under different benchmarking schemes for the CER measurement.

7. Concluding remarks

Asset pricing theories based on the safety-first principle highlight the importance of riskiness in the worst states of nature.
Losses amid extreme market crashes are especially painful, and the potential to hedge market black swans is highly desirable. We
gauge such features by introducing a CER proxy that predicts a stock’s performance upon rare market plummets. We document a

case where the non-extreme distribution information is more relevant. Therefore, Van Oordt and Zhou’s measure cannot effectively capture black swan hedging
feature either. We report detailed analyses results about the difference between CER and Van Oordt and Zhou’s measure (as well as its components) in the
online appendix.

22 Note in the case with 𝑀𝑘𝑡𝑉 𝑎𝑅0.5% in Panel A, the minimum value of FirmRet|MktVaR is larger than that of MktVaR. This is due to the fact that we trim
off the top and bottom 2.5% observations of FirmRet|MktVaR in the full sample, but do not trim off the extreme values of MktVaR.
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Table 9
Effects of CER measures corresponding to different probability levels of market VaR.

Panel A: Mean and range values of CER measures conditioning on different market VaRs

Based on MktVaR5% Based on MktVaR2% Based on MktVaR1% Based on MktVaR0.5%

Mean
CER 1.2743 1.1753 1.1274 1.0939
FirmRet|MktVaR −0.0888 −0.1120 −0.1282 −0.1433
MktVaR −0.0775 −0.1019 −0.1198 −0.1384
Range (max & min)
CER Max 3.5796 3.1880 3.0922 3.0955

Min −0.2288 −0.2906 −0.3606 −0.4383
FirmRet|MktVaR Max 0.0136 0.0213 0.0303 0.0422

Min −0.2698 −0.3270 −0.3695 −0.4156
MktVaR Max −0.0320 −0.0403 −0.0434 −0.0449

Min −0.1939 −0.2373 −0.3163 −0.6274

Panel B: Correlations of CER measures based on different market VaRs

CER5%,i CER2%,i CER1%,i CER0.5%,i

CER5%,i 1.0000 0.9197 0.8420 0.7668
CER2%,i 0.9125 1.0000 0.9777 0.9321
CER1%,i 0.8260 0.9740 1.0000 0.9848
CER0.5%,i 0.7433 0.9214 0.9820 1.0000

Panel C: Excess returns in portfolios of CER conditioning on different market VaRs

Excess return based on CER portfolios Fama–MacBeth

1 Low 5 High High - Low Coefficient of CER

CER5%,i 0.9373 1.3728 0.4355 0.2835
[2.18] [2.46]

CER2%,i 0.9654 1.4022 0.4367 0.3318
[2.33] [2.81]

CER1%,i 0.9567 1.4013 0.4446 0.3407
[2.47] [2.92]

CER0.5%,i 0.9667 1.4191 0.4525 0.3291
[2.61] [2.96]

Market VaRs (MktVaR) associated with different probability levels of 0.5%, 1%, 2%, and 5% are predicted, and individual stocks’ conditional expected returns
FirmRet|MktVaR) are estimated. Mean, maximum, and minimum values of MktVaR, FirmRet|MktVaR, as well as the corresponding CER are reported in Panel A

under each probability scheme of market VaR, after the top and bottom 2.5% observations of CER and FirmRet|MktVaR in their full samples are trimmed off.
Panel B presents pooled sample Pearson and Spearman correlation coefficients in the lower-left and upper-right triangles, respectively, among CER measures
corresponding to different probability levels of market VaR, with bold numbers indicating statistical significance at the 1% level. Panel C reports full-period
time-series average percentage excess returns of the top and bottom quintile portfolios formed each month on CER under each market VaR scheme, the return
differences between them, as well as the CER coefficients in univariate Fama–MacBeth regressions with individual stock percentage excess returns as the dependent
variable. Newey–West t -statistics are reported in brackets.

significantly positive relation between CER and expected stock returns in the cross-section, which is more pronounced when the
market calamities are expected to be more severe and thus hedging the extreme market risk is more valuable. We also find that CER
is a driving factor for the cross-sectional effects of downside beta and cokurtosis, and it largely explains the premium to coskewness.
CER exhibits a stronger asset pricing effect among stocks with greater black swan hedging potential, an attribute that cannot be
effectively captured by co-crash-based tail dependence measures.

Our study sheds light on a few important considerations in respect to extreme risk. First, we provide empirical evidence
supporting investors’ safety-first concern in asset pricing, which has not been done before. Given the significant role of the safety-
first theory in finance, our research, especially the novel methodology of CER measurement, contributes a relevant tool to future
investigations in this field.23 Second, with the juxtaposition of the already-documented pricing effect of systematic downside risk
(downside beta) and the general failure to record a premium to systematic tail risk represented by tail dependence, there are
arguments that investors may be concerned with the general downside risk of their investment rather than only the potential extreme

23 Roy’s (1952) article about safety-first rule appeared in the same year (with only a three-month lag) as Markowitz’s (1952) groundbreaking paper on portfolio
election. Bernstein (1992, p. 212) notes that ‘‘(Roy’s article) followed an almost identical line of argument (as Markowitz’s)’’ and ‘‘the resembling between the
wo articles was all the more remarkable because no one had ever before tried to develop a theory of portfolio selection’’. Sullivan (2011, title) calls Roy ‘‘the
orgotten father of portfolio theory’’. Markowitz (1999, p.5) himself also acknowledges Roy’s contribution by commenting: ‘‘On the basis of Markowitz (1952),
am often called the father of modern portfolio theory (MPT), but Roy (1952) can claim equal share of this honor’’.
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Table 10
Different benchmarking schemes in CER measurement and its pricing effect.

Panel A: Mean CERs constructed by using different percentile thresholds

GPD estimation percentile threshold Market return percentile threshold for Heffernan–Tawn dependence estimation

15th 20th 25th

15th 1.1037 1.1268 1.1439
20th 1.1109 1.1274 1.1404
25th 1.1073 1.1237 1.1349

Panel B: Return spreads of cers constructed by using different percentile thresholds

GPD estimation percentile threshold Market return percentile threshold for Heffernan–Tawn dependence estimation

15th 20th 25th

15th 0.4499 0.4065 0.4047
[2.63] [2.40] [2.32]

20th 0.4899 0.4446 0.4485
[2.79] [2.47] [2.45]

25th 0.4622 0.4596 0.4472
[2.60] [2.50] [2.38]

Panel C: Fama–MacBeth coefficients of cers constructed by using different percentile thresholds

GPD estimation percentile threshold Market return percentile threshold for Heffernan–Tawn dependence estimation

15th 20th 25th

15th 0.3191 0.3176 0.3215
[3.02] [2.91] [2.83]

20th 0.3439 0.3407 0.3401
[3.09] [2.92] [2.85]

25th 0.3440 0.3625 0.3479
[3.01] [3.00] [2.83]

In the CER measurement, different threshold levels of the top 15th, 20th, and 25th percentiles are used for selecting extreme observations for
the estimations of GPD right tail and Heffernan–Tawn dependence (the bottom 15th, 20th, and 25th percentiles are used as benchmarks in GPD
left tail estimation). Mean values of CER estimates based on different combinations of benchmarks (after the top and bottom 2.5% observations
of the full sample are trimmed off) are reported in Panel A. Panels B and C respectively present full-period time-series mean return spreads (in
percentage) between the top and bottom quintile portfolios formed each month on CER and CER’s coefficients from univariate Fama–MacBeth
regressions with percentage excess returns as the dependent variable and CER as the independent variable, for CER estimates under different
benchmarking schemes. Newey–West t -statistics are reported in brackets.

risk (Van Oordt and Zhou, 2016). Our study, however, depicts a different picture. Our findings suggest that investors are not only
concerned with extreme risk, but such a concern is so strong that it drives a significant part of the premium to downside risk. The
weak effect of tail dependence-based measure is not due to investors’ indifference to extreme risk but rather to its inadequacy of
capturing the black swan hedging potential that turns out to play a significant role in asset pricing. Third, based on the covariance
between asset payoff and a non-linear pricing kernel as a function of market return, higher-order comoment measures of coskewness
and cokurtosis act as part of a remedy for the inefficacy of the CAPM in capturing tail risk. These measures incorporate the effects
of non-Gaussian distribution tails, but to what extent they reflect extreme risk has yet to be investigated. Our work also helps obtain
further insights on this issue. Finally, there is recent evidence that the comoment (especially coskewness) effect is not confined to the
single asset class of stocks. Yang et al. (2010) find that the desirable positive skewness of bonds provides a good hedge against the
undesirable negative skewness of stocks, and the coskewnesses between stock return and bond volatility and between bond return
and stock volatility both command a negative premium. Yang et al.’s (2010) work suggests that, in an extreme risk framework, bond
market holds great potential to hedge the black swan in stock market, and we expect that our CER-based measure works better to
capture black swan hedging in a cross asset class (i.e., cross stock and bond) setting, within which the relation between CER and
Yang et al.’s (2010) coskewness measure is worth further investigation in future research.
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