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 MANAGERIAL AND DECISION ECONOMICS, VOL. 13, 421-428 (1992)

 Investment in Salvage Equipment
 Paul M. Mangiameli, S. Ghon Rhee

 The University of Rhode Island, Kingston, RI, USA

 and

 George F. Tannous
 University of Saskatchewan, Saskatoon, Saskatchewan, Canada

 Manufacturers are faced with three options for disposing of excess finished items: they can (1)
 continue to mark down the item until it sells; (2) dispose of or scrap it; or (3) salvage it in order
 to reclaim valuable raw materials and components. In many situations the option of a
 markdown is not viable, thus the choice is to either scrap or salvage. Although many
 manufacturers have invested in salvage equipment, they have not deduced the impact of this
 investment as it affects not only the risk-adjusted value of the project but also the production run
 size and the selling price. Hence, their decisions frequently turn out to be suboptimal. This paper
 develops a project-valuation model that adds a new dimension to traditional capital budgeting
 decisions by incorporating salvage capacity.

 INTRODUCTION

 Typically, manufacturers must choose one of three

 possible options to dispose of excess production:

 the item can be (1) marked down until it is sold, (2)

 scrapped or otherwise disposed of; or (3) worked or
 reprocessed so that either valuable raw materials

 and components are reclaimed or the item is used to

 make some byproduct. Baked goods and vegetables
 cannot be sold beyond their freshness dates. High-

 end fashion jewelry is not sold at markdown for fear
 that this will cause alarm among current and future

 customers. Certain greeting-card companies will
 not mark down their cards in order to maintain a
 higher status or image for their products. Thus,
 these manufacturers must choose either the second

 or third option.
 The third option is called salvage. A salvage

 process is performed by specialized machines or

 operations in order to lower the manufacturer's cost
 of carrying unsold items. Many examples may be
 cited where manufacturers rely on the third option
 as part of their operations. In the costume jewelry
 industry, special smelters are being purchased to
 remove gold and base metals from unsold pieces.
 Investments in specialized grinders and blenders are

 being made by wholesale bakers to reprocess un-
 sold bread into bread crumbs and other baked
 products into ingredients for animal feed. The in-

 vestment in salvage equipment, however, is not

 without cost. There is a fixed cost for the equipment
 itself as well as a variable cost to rework or repro-

 cess the item. Unfortunately, little research has been
 conducted on the impact of the investment for
 salvage operations on the firm's market value.
 Atkinson (1979) is the only author to have exam-

 ined salvage value. He used this value as an internal

 transfer price but did not extend his analysis to
 include investment in salvage processes as an ex-

 plicit decision variable to maximize the firm's value.
 As a result, manufacturers may make suboptimal
 decisions for investments in salvage equipment.
 They either do not invest when a salvage operation
 would improve the firm's value or invest excess

 amounts where a smaller or indeed no operation
 would be more advantageous.

 In this paper we develop a model for an optimal

 investment decision in salvage equipment and the
 impact of this decision on the product's selling price
 and the size of the production run. Our results are
 applicable to manufacturers of high-end costume
 jewelry, greeting cards, newspapers, and magazines,
 wholesale bakeries, or any others who cannot mark
 down their unsold items. For all these industries, if
 no investment is made in salvage processes then the
 unsold finished goods or unused subassemblies are
 scrapped at little or no value. Yet a significant
 improvement may be attained on the firm's profit-
 ability with an investment in the salvage process.
 The analysis is conducted using a Capital Asset
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 Pricing Model (CAPM) framework to take into

 account both risk and return of the investment

 decision under study. Recent applications of the

 CAPM are found in Anvari (1987) and Kim and
 Chung (1989) for stochastic inventory valuation.

 A FIRM VALUATION WITH
 INVESTMENT IN SALVAGE

 EQUIPMENT

 Invoking the usual underlying assumptions of the

 CAPM, the market value of any risky asset (or firm)

 that will increase with a while the variable salvage

 cost per unit, C(c(a), is inversely related to the
 operation's size. We assume that both FJ(O) and
 Cs(O) equal zero. P,, is the known selling price of the
 salvaged unit. Let D = D(P)(l + e) be a stochastic

 demand function, where D(P) is the expected de-
 mand, P the selling price per unit of the item, and e
 an uncertainty factor with an expected value of zero

 and a known variance.' Additionally, let C be the
 known variable cost per unit and F be the known

 fixed cost. Depending upon the magnitude of prod-

 uct demand, the end-of-period cash flows to the
 firm, ir, may be defined as:

 f PR-CR-F-F.(cc) if D>R (2a)
 7r = (PD-CR-F) + {(R-D)[P -Cs(c)]-Fs(a)} if R > D> R(1 -ao) (2b)

 (PD-CR-F) + {aR[P -Cs(cc)] -Fs(cc)} if R(1 -a) > D (2c)

 is expressed as:

 V=[E(ir)-ACov(n, m)]/(1+r) (1)

 where

 X = uncertain cash flows to the firm,

 A= [E(m)-r]/a 2(m) = the market price of sys-
 tematic risk,

 m= the rate of return on the market portfolio,
 r=the risk-free rate of return, and
 E(. ), a2(. ), and Cov(. , .) denote the expected value,

 variance, and covariance operators, respectively.

 A manufacturer must decide how many units to

 produce and what price to charge. In many (if not

 most) situations demand is highly stochastic.

 Hence, the manufacturer faces the risk of over- or

 underproduction. If more units are produced than
 are demanded, the manufacturer faces another in-
 vestment decision in the salvage operation to re-
 claim or remove valuable components. The most
 important question is the optimal size of the salvage

 process to maximize the firm's value. Follow-up

 questions include the impact of the salvage opera-
 tion on price, run size, and riskiness.

 The capacity of the salvage operation is defined

 by aR, where R denotes the production run size in

 units and a is a scale factor that ranges between 0
 and 1. In reality, investment in salvage equipment
 would be for discrete sizes, but for ease of exposition
 we assume that it is a continuous variable. The

 salvage operation therefore incurs a fixed cost, FjQa),

 When the product demand exceeds the produc-
 tion run size, no salvaging is done, but the fixed cost
 for the salvage operation is incurred. Equation (2a)
 denotes the cash flows to the firm under this
 situation. When the product demand is less than
 production, the salvage operation will be utilized. If
 the unsold units are less than the capacity of the
 salvage operation, Eqn (2b) describes the cash flows
 to the firm. The first term is income from the sale of
 the demanded items while the second term enclosed
 within the braces is the income from the salvage
 operation. If the unsold units are even greater than
 the salvage capacity, Eqn (2c) denotes the firm's
 cash flows. In this case, the excess unsold units over
 the salvage capacity are assumed to be scrapped. If
 the manufacturer decides to scrap its excess produc-
 tion, then no investment is made in the salvage
 process and the end-of-period cash flows described
 by Eqns (2b) and (2c) will be the same because the
 expressions enclosed within the braces are defined
 to be zero.

 The optimization process of a typical firm stops
 after the firm's value-maximizing production run
 size and the selling price are determined. This

 typical process, however, neglects the impact of
 salvage investment on the firm's value. Based upon
 the end-of-period cash flows defined by Eqns
 (2a)-(2c), it is possible for the firm to optimize not
 just price and run size but to simultaneously deter-
 mine whether a salvage operation should be added
 and, if it is, what capacity it should have. This
 investment decision in salvage equipment will have

 a significant impact on the price and production
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 run size. The conventional wisdom suggests that if

 an item has a salvage value, the production run size

 will be greater than if there is no salvage value. This

 statement, however, assumes that there is no fixed

 cost to the salvage process and that the variable cost
 of salvaging is not a function of the capacity of the
 process. In the presence of the interaction among

 decisions involving production run size, selling pri-

 ce, and salvage capacity, the end-of-period cash

 flows as defined by Eqns (2a)-(2c) provide a good
 starting point for this paper's analysis. There are
 two boundary points for the firm's cash flows, i.e.

 when D is equal either to R or to R(1 - a), which are

 based upon the magnitude of stochastic demand for

 the product as indicated by Eqns (2a)H(2c). Sub-
 stitution of the full expression for demand,
 D = D(P)(1 + e), into the above boundary points

 allow us to express the conditions where demand

 will exceed the upper boundary point as

 e > R/D(P)- 1 = U

 and the conditions where demand will be below the
 lower boundary point as:

 e R(1 - a)/D(P)- 1 =L

 In order to find the expected value of cash flows

 as defined by Eqns (2a)-(2c) we introduce two
 expected values of units given the two boundary
 points. Let n(.) be the probability density function
 of e and let

 u

 Q1= j (U-e)n(e)de

 and
 L

 Q2 = f (L - e)n(e)de

 Thus, Q1D(P) is the expected number of unsold
 units that the firm would have without the salvage

 operation and would be forced to scrap, Q2D(P) the
 expected number of unsold units that the firm
 would have to scrap despite the investment in the
 salvage operation, and (Q1 - Q2)D(P) the expected
 number of unsold units that would be salvaged
 given the investment in the salvage operation. The
 expected value of X as defined by Eqns (2a)-(2c) is
 now written as:

 E (r)= P [R-D(P)Q1] - CR-F

 + [Ps - Cs(a))] [D(PXQ1 - Q2)]- Fs(a) (3)

 The term in the first brackets represents the
 expected satisfied demand while that in the third

 brackets is the expected units sold at salvage price

 PS under the salvage operation. Assuming e and m
 to have a joint bivariate normal distribution, the
 following proportionality between Cov(i, m) and

 Cov(e, m) can be derived:

 Cov(ir, m)=Cov(e, m)D(P){PN(U)

 - [Ps - Cs(a)c] [N(U) - N(L)] } (4)

 where N(.) is the cumulative normal probability
 density function (see Appendix). Substitution of
 Eqns (3) and (4) into (1) yields:

 V(P,R,a) = (PD(P)[(R/D(P)) -Q

 - ACov(e, m)N(U)] - CR - F

 + {D(P)[Ps-CS(c)](Q1-Q2

 +ACov(e, m)[N(U)-N(L)])

 - Fs(a)} )/(1 + r) (5)

 where the firm's value is denoted by V(P, R, a),
 showing the three variables of interest: unit price,
 production run size, and the capacity of the salvage
 operation. The entire numerator of Eqn (5) is the
 certainty equivalent of the end-of-period cash flows
 to the firm. The term in the braces represents the
 value added by the salvage operation. If this term is
 less than or equal to zero, then the salvage opera-
 tion would reduce the firm's value and therefore the
 firm should choose to scrap rather than salvage its
 excess inventory.

 INVESTMENT IN SALVAGE
 EQUIPMENT AND ITS STRATEGIC

 IMPLICATIONS

 Equation (5) must now be solved for the optimal
 values of the three decision variables: the price of
 the unit, the production run size, and the capacity of
 the salvage operation. As the decision variable a is
 restricted by the range 0 < a <, 1; the solution to the
 problem can be obtained by taking the Lagrangian
 function Y = V(P, R, a) + 0(1 - a), and satisfying the
 Kuhn-Tucker conditions ac//O a = 0, 0(1 - a) = 0,
 0>O, and

 OYIOP = { [D(P) + PD'(P)](R/D(P) -Q1
 - ACov(e, m)N(U)) - P(R/D(P))

 x (1 -N(U)-ACov(e, m)n(U))D'(P)

 + [Ps- Cs(a)][G(U)

 -G(L)]D'(P)}/(1 + r) = 0 (6)
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 YIOR = { P(1 - N(U) - ACov(e, m)n(U))

 + [Ps - Cs(a)] { N(U) + ACov(e, m)n(U)

 -(1- a)[N(L) + )Cov(e, m)n(L)] }

 -Cll(l+r)=0 (7)
 and

 Y//ao = {-Cs(a)D(P)[Q -Q2 + ACov(e, m)

 x (N(U)-N(L))] + R[Ps-Cs(a)]

 [N(L) + ACov(e, m)n(L)]

 -sR(a) j/(I + r)- 0 <0 (8)
 where G(.)= -N(.)+ 2(e)n(.)+1tCov(e, m)[N(.)
 -(1 +. )n(.)], and 0 is a multiplier.2 The solution

 will optimize the firm's value.3

 Numerical Example

 For ease of illustration, the following numerical
 example is employed to derive the optimal price,
 production run size, and salvage capacity and to
 demonstrate the interactions of the three decision
 variables. Let:

 D(P) = 300 000-12 OOOP; ACov(e, m)=0.125;
 C = $10; E(m) =0.21;
 F $250 000; o(m) = 0.08;

 Ps = $8; v(e) = 0.4;

 Cs\(a) = $5- 2.5(a); E(e) = 0; and

 Fs(a) = $40 000(e'- 1); r = 0.08

 Setting a at various intervals between 0 and 1 and

 then using Newton's method to find P and R yields
 the maximum value of the firm. From Table 1 the

 firm's value is a concave function of a. The firm's

 value increases initially as the investment in the
 salvage operation increases. The firm's value
 reaches its maximum of $121 786.70 at oa=0.5921
 and then it slopes downward. Its maximum value is
 obtained at the optimal price of $18.277 and run
 size of 77609, respectively. The a-value of 0.5921
 implies that the optimal capacity of the salvage
 operation is 45 952 units. Further, from Table 1, the
 optimal price decreases and run size increases as the
 size of salvage operation increases. When the firm
 scraps rather than salvages its unsold production,
 i.e. a=0, the firm's value is only $103493 with P
 = $18.456 and R = 65 851 units. Thus, the adoption
 of the salvage operation allows the firm to lower the
 price of the finished product and to increase the

 production run size, which should, in turn, make it

 possible to further penetrate the market and in-

 crease its market share.

 Depending upon the operating environment of

 the firm, a few variations of the results reported in
 Table 1 may be discussed. First, consider the firm in

 a highly competitive market where it must sell at a
 market-determined price and its physical plant

 configuration does not allow flexibility in output.

 Its only decision variable is then the size of the

 salvage operation. For comparison with the results

 in Table 1, the same numerical values of P= $18.456
 and R=65 851 units when oa =0 are used. As sum-

 marized in panel A of Table 2, the firm's value is a
 concave function of the size of the salvage opera-

 tion. It is not surprising that this maximum value is
 approximately 6% smaller than that obtained in
 the previous example where the firm is allowed to
 simultaneously search for the three key variables.

 Other interesting cases emerge as either price or
 run size is held constant. Consider the firm that is a
 price leader but its run size is fixed due to its plant's
 physical capacity or to labor restrictions. The firm
 must then decide both price and the size of the
 salvage operation. As presented in panel B of
 Table 2, the firm's value is maximized at $116 410.63

 when a=0.46851 and P=$18.834. Unlike the res-

 ults presented in Table 1, the relationship between
 the size of salvage operation and the optimal price is

 positive. The rate of change in the price is larger
 than that observed in Table 1. This is explained by

 Table 1. The Relationship between Investment in
 Salvage Operation with the Firm's Value,
 Price, and Run Size

 The firm's

 Investment in salvage Price (= P) Run size (= R) value (= V)

 operation (= a) ($) (units) ($)

 0.0000 18.456 65 851 103 493.70
 0.1000 18.424 67 805 108 148.01

 0.2000 18.392 69 861 112 551.86

 0.3000 18.361 71 952 116 390.02

 0.4000 18.331 74004 119 361.72
 0.5000 18.302 75 951 121215.46

 0.5800 18.280 77 399 121776.75

 0.5900 18.277 77 572 121 786.42
 0.5921 18.277 77 609 121 786.70a
 0.6000 18.274 77 744 121782.45

 0.7000 18.249 79 367 120 993.32
 0.8000 18.224 80843 118867.15

 0.9000 18.201 82215 115475.36

 1.0000 18.179 83 539 110900.09

 a Optimal value.
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 the firm's price-leader status. Being a price leader,
 the firm is able to change its price and it does so
 faster than usual. Its action, however, is not without
 cost. Too high a price will result in more unsold
 units, hence a larger salvage operation and a lower
 value of the firm.

 Suppose the firm must accept a market-deter-
 mined price while it is able to decide the size of both
 its production run and its salvage operation. This
 case differs from the case presented in Table 1 in
 that the price is not a decision variable. This firm's
 maximum value is $121 529.81 at a=0.58692 and R
 = 75 861 units as presented in panel C of Table 2.
 The same positive relationship between the size of

 the salvage operation and the run size exists as
 indicated in Table 1. Because the firm cannot set the
 price, its value and run size are smaller than those
 summarized in Table 1. When compared with the
 results in panel B, the firm has a higher maximal
 value with the inflexibility in price setting than with
 the inflexibility in run size. The price setter of panel
 B has a lower value of $5119.18 than the market
 penetrator of panel C. Regardless of the market
 environment in which the firm operates, an import-
 ant conclusion is that any over- or under-invest-
 ment in the salvage operation is suboptimal for the
 firm's value maximization.

 Strategic Implications of Salvage Investment

 Depending upon the functional relationships be-
 tween the size of the salvage operation on price and
 production run size, general strategic implications
 can be considered for manufacturing firms. By
 letting a be an exogenous parameter, identities (6)
 and (7) can be solved for the optimum P* and R* as
 functions of a. The derivatives of these functions
 with respect to a will determine the overall strategic
 implications. At the optimum, dP*/da=D1/D3 and
 dR*/dcx=D2/D3, where D1, D2, and D3 are the
 determinants of the matrices:

 - VPa~ VPR Vpp -PI
 Dj = |V V|D2 =|V V| - VRa VRR VPR -VRa

 VP VPR
 VRP VRR

 where VPR, VRa, and Vp, are the second-order
 mixed partial derivatives of V, and VPP and VRR are
 the second-order partial derivatives of V with re-

 Table 2. Investment in Salvage Operation in Three

 Different Cases
 The firm's

 Investment in salvage Price (= P) Run size (= R) value (= V)

 operation (=a) ($) (units) ($)

 A. Price and run size are held constant:

 0.0000 18.456 65 851 103493.22

 0.1000 18.456 65 851 107 828.06

 0.2000 18.456 65 851 111 263.23

 0.3000 18.456 65 851 113 551.89

 0.4000 18.456 65 851 114 546.81

 0.4200 18.456 65 851 114 583.95

 0.4236 18.456 65 851 114 584.84

 0.5000 18.456 65 851 114187.70

 0.6000 18.456 65 851 112478.70

 0.7000 18.456 65 851 109461.79

 0.8000 18.456 65 851 105 191.01

 0.9000 18.456 65 851 99 711.73

 1.0000 18.456 65 851 93 046.59

 B. Run size is held constant:

 0.0000 18.456 65 851 103493.22

 0.1000 18.543 65 851 107935.17

 0.2000 18.630 65 851 111689.77

 0.3000 18.713 65 851 114472.91

 0.4000 18.788 65 851 116071.20

 0.4683 18.834 65 851 116410.53

 0.4685 18.834 65 851 116410.63a

 0.5000 18.853 65 851 116 352.59

 0.6000 18.908 65 851 115 266.41

 0.7000 18.954 65 851 112 826.88

 0.8000 18.993 65 851 109 085.78

 0.9000 19.027 65 851 104102.68

 1.0000 19.059 65 851 97 920.48

 C. Price is held constant:

 0.0000 18.456 65 851 103493.22

 0.1000 18.456 67 546 108 140.45

 0.2000 18 456 69 329 112 521.24

 0.3000 18.456 71 133 116320.63

 0.4000 18.456 72 893 119 239.09

 0.5000 18.456 74 546 121026.64

 0.5860 18.456 75 848 121529.75

 0.5869 18.456 75 861 121 529.81a

 0.6000 18.456 76049 121 516.77

 0.7000 18.456 77 3.90 120642.51

 0.8000 18.456 78 591 118424.80

 0.9000 18.456 79697 114936.34

 1.0000 18.456 80 759 110259.31

 a Optimal values.

 spect to P and R. Given that the second-order
 conditions for an optimum are satisfied, then D3 is
 positive. Hence, the respective signs of dP*/da and
 dR*/da are determined by D1 and D2, respectively.
 Overall strategic implications may be examined
 depending upon the signs of D1 and D2.

 A negative D1 and a positive D2 imply that the
 investment in salvage equipment lowers the selling
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 price and the firm should be able to increase the
 production run size. The appropriate strategy for

 the firm is a market-penetration one. The market-
 penetration policy is particularly effective when
 product demand is price sensitive, per unit produc-

 tion costs fall with increased run sizes, and the low

 price discourages competitors from entering the
 market (Kotler, 1984). Even if the firm must accept a
 fixed price determined by a price leader in the
 industry, it should still follow the market-penetra-

 tion strategy because it gains from the residual
 value of the salvaged units. The numerical problem
 provided in this paper is an example of a market-

 penetration strategy.

 If D1 is positive but D2 is negative, then the

 optimal policy for the firm is a skim-pricing strat-
 egy. An example of this would be a newly launched
 high-fashion product. McCarthy and Perrault
 (1987) suggest a skim-pricing strategy under which

 the firm sells the product to the top of the market at
 a high price. Kotler (1984) suggests that skim
 pricing should be employed when: (1) a sufficient
 number of buyers have a large current demand; (2)
 the unit costs of producing a small run size are low
 enough not to cancel the advantage of skim pricing;
 (3) the high price does not attract more competitors;
 and (4) the high price supports the image of a
 superior product (i.e. prestige pricing). In this case,
 the higher price will increase marginal returns while
 the salvage operation and the smaller run size
 reduce the risk of following the skim-pricing policy.

 The situations where D1 and D2 are both either
 positive or negative are not possible given the
 conditions for concavity. Specifically, as long as the

 price of the salvaged item, Pr, exceeds the variable
 cost of salvaging, Cj(a), for all permissible values of
 a, then D1 and D2 must have opposite signs.

 Systematic Risk and Salvage Equipment

 Investment in a salvage operation will help the firm
 dispose of excess production at a profit. It is not
 clear, however, whether such an investment will
 increase or decrease the systematic risk (or beta) as
 defined by:

 fi=Cov(n, m)/(cT2(m) V(P, R, a)) (9)

 The impact of a salvage operation on the firm's

 systematic risk may be examined by the sign of the
 derivative of Eqn (9) with regpect to a. Unfortu-
 nately, the sign is not clearly determined because
 the change in a may lead to changes in either the

 Table 3. The Relationship between Investment in

 Salvage Operation and Systematic Risk
 The firm's

 Investment in salvage value (= V) The firm's

 operation (=a) ($) beta (= ,)

 0.0000 103 493.70 4.2800

 0.1000 108 148.01 4.1762

 0.2000 112 551.86 4.0838

 0.3000 116 390.02 4.0092

 0.4000 119 361.72 3.9562

 0.5000 121215.46 3.9285

 0.5600 121 716.73 3.9262b

 0.5800 121776.75 3.9285

 0.5900 121 786.42 3.9300

 0.5921 121 786.70a 3.9300

 0.6000 121782.45 3.9315

 0.7000 120 933.32 3.9700

 0.8000 118 867.15 4.0492

 0.9000 115475.36 4.1762

 1.0000 110900.09 4.3600

 a Optimal value.
 b Minimum beta.

 price or the run size, or both. For- this reason, the
 numerical example in Table 1 is used to examine the
 impact of the salvage operation on the firm's beta.

 Table 3 summarizes the results.
 The firm's beta is 4.28 given a zero investment in

 salvage value. As the size of the salvage operation
 increases, the firm's beta decreases to reach its
 minimum of 3.9262 at x = 0.56. The firm's beta then
 slopes upward as the firm increases the amount of

 salvage operation. The minimum beta is attained
 before the firm's value is maximized, which implies
 that the minimization of the firm's cost of capital is
 not consistent with the maximization of the firm's
 value.4 The same trend has been observed from the
 numerical simulation conducted for the three cases

 of operating environment reported in Table 2.

 SUMMARY AND CONCLUSIONS

 Manufacturers in many industries such as whole-
 sale baking, greeting cards, and high-end fashion
 jewelry are faced with either scrapping or salvaging
 their unsold production. This paper has examined
 the impact of the investment in salvage operations.
 This has been accomplished by modelling the firm's
 end-of-period cash flows under different semi-
 elastic demand conditions. In the CAPM frame-

 work, it has been demonstrated that the size of the
 investment in salvage equipment directly affects the
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 SALVAGE EQUIPMENT 427

 price and run size decisions. The investment in
 salvage operation adds a new dimension to tradi-
 tional capital budgeting decisions. The findings of
 this paper indicate that the firm's value is a concave
 function of the size of the salvage operation, with a
 maximum reached at a finite point of the
 operation's size. To ignore this important decision
 variable will lead the firm to make suboptimal
 decisions.

 Jb

 e2n(e)de = o2(e)(N(b) - N(a))
 a

 + c2 (e)(an(a) - bn(b)) (A9)
 where a and b are such that -oo < a, b < + oo.

 Using Eqns (A8) and (A9) to re-express Eqns (A3)
 through (A7), and adding the re-expressed values
 for r1 -175 yields (after simplifying)

 F= o2(e)D(P)(PN(U)

 - (Ps - Cs(a))(N(U) - N (L))) (AIO)

 Substituting Eqn (A10) for the term in the brackets
 in Eqn (A2) yields Eqn (4).

 APPENDIX

 To develop Eqn (4) let

 r+ co+ c

 Cov(7x, M) = f f(D (n-E(7r))

 x (m - E(m))n(e, m)dmde (Al)

 where n(e, m) is the bivariate normal distribution for
 (e, m). Then

 r+c

 f (m - E(m))n(e, m)dm =

 (e - E(e))/cT2(e)n(e)Cov(e, m)

 where n(e) is the marginal distribution of e. By

 assumption, E(e)=O, thus Eqn (Al) reduces to

 Cov(ir, m) = Cov(e, m)/ar2(e)H e7rn(e)del (A2)
 L.) - 00 J

 Let F equal the term in the brackets and let

 u

 F1 = J PD(P)(1 + e)en(e)de (A3)

 rL

 F2 = (Ps - Cs())(U - L)D(P)J en(e)de (A4)

 F3 = (Ps - Cs(a))R( en(e)de) (A5)

 4 =-(Ps - Cs())( D(P)(l + e)en(e)de) (A6)

 u

 F5= J'PRen(e)de (A7)
 JL

 Thus, F also equals the sum of Eqns (A3) through
 (A7).

 For a normal distribution with a mean of zero

 b

 |en(e)de = a 2(e)(n(a) -n(b)) (A8)
 Ja

 NOTES

 1. Kottas and Lau (1979), Constantinides et al. (1981)
 and Lau and Lau (1987) all assumed a stochastic
 demand function.

 2. Having assumed e to be normally distributed with
 mean of zero, we can use Eqns (A8) and (A9) from the
 Appendix to obtain Q1 = UN(U) + a2(e)n(U) and

 Q2 = LN(L) + ar2(e)n(L).
 3. There are certain conditions that are necessary to

 ascertain the concavity of the firm's value curve:

 (a) The demand function, D(P), must be such that
 D'(P) is strictly negative and that D"(P) is less than
 or equal to zero which would be the case where
 expected demand decreases as price increases;

 (b) The variable cost of the salvage operation is such
 that as the size of the operation increases, the
 variable cost decreases, i.e. Cl a) is strictly negative
 while C"'(o) is greater than or equal to zero;

 (c) The fixed salvage cost increases as the operation
 gets larger or where F' o) is strictly positive while
 F"'(o) is greater than or equal to zero;

 (d) The risk discount factor that modifies expected
 demand, A = (R/D(P)) - Q- ACov(e, m)N(U), and
 the rate of change of A as U=(R/D(P)-1)
 changes, OA/IU= 1 -N(U)- ACov(e, m)n(U), are
 both positive; and

 (e) Mathematically the expression (1- ACov(e,
 m) U/fr2(e)) is positive. This last condition ensures
 that (1- ACov(e, m)L/a 2(e)) is positive and (G(U)
 -G(L)) is negative as L < U for all permissible
 values of a.

 4. See Arditti (1973) and Haley and Schall (1978).
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