Fill in the blanks.

Theorem. The number $\sqrt{2}$ is irrational.

Proof. Assume, to the contrary, that $\sqrt{2}$ is _____ and $b \neq \sqrt{2} = \frac{a}{b}$, such that a and b are ____ and $b \neq 0$

Moreover, we may assume that the fraction $\frac{a}{b}$ is in ______ terms.

$$\Rightarrow 2 = \left(\sqrt{2}\right)^2 = \left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2}$$

$$\Rightarrow a^2$$
 is even, since ____ is an integer

$$\Rightarrow a \text{ is }$$

$$\Rightarrow a = 2c$$
, for some integer c

$$\Rightarrow a^2 = (2c)^2 = 4$$
 _____; but, $a^2 = 2b^2$

$$\Rightarrow 4c^2 = 2b^2$$

$$\Rightarrow b^2 = 2$$

$$\Rightarrow b^2$$
 is even, since b^2 is an _____ \Rightarrow ____ is even.

However, this is absurd, because a and b cannot both be even as $\frac{a}{b}$ is in lowest terms. Therefore, we have reached a contradiction.