Fill in the blanks.
Theorem. The number $\sqrt{2}$ is irrational.
Proof. Assume, to the contrary, that $\sqrt{2}$ is $\qquad$
$\Rightarrow \sqrt{2}=\frac{a}{b}$, such that $a$ and $b$ are $\longrightarrow$ and $b \neq$
Moreover, we may assume that the fraction $\frac{a}{b}$ is in
terms.
$\Rightarrow 2=(\sqrt{2})^{2}=\left(\frac{a}{b}\right)^{2}=\frac{a^{2}}{b^{2}}$
$\Rightarrow 2 b^{2}=$
$\Rightarrow a^{2}$ is even, since $\qquad$ is an integer
$\Rightarrow a$ is $\qquad$
$\Rightarrow a=2 c$, for some integer $c$
$\Rightarrow a^{2}=(2 c)^{2}=4 \ldots \quad$; but, $a^{2}=2 b^{2}$
$\Rightarrow 4 c^{2}=2 b^{2}$
$\Rightarrow b^{2}=2$
$\Rightarrow b^{2}$ is even, since $b^{2}$ is an $\qquad$ $\Rightarrow \quad$ is even.
However, this is absurd, because $a$ and $b$ cannot both be even as $\frac{a}{b}$ is in lowest terms. Therefore, we have reached a contradiction.

