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a b s t r a c t

This study assesses the performance of the support vector machine image classification technique in
the context of a tropical coastal zone exhibiting low to medium scale development. The overall and
individual classification results of this approach were compared to the maximum likelihood classifier and
the artificial neural network techniques. A 15-m spatial resolution ASTER image of Koh Tao in Thailand
was used for the test, and support vector machine was found to offer only limited improvements in
classification accuracy over the other methodologies. The support vector machine did, however, show
promise in dealing with the difficult challenge of separating human infrastructure such as buildings from
other land cover types such as coastal rock and sandy beach which have very similar spectral signatures.
The medium resolution ASTER image also proved highly suited to classifying coastal landscapes with
this mix of land cover types. Additional research is needed to assess the full potential of the support
vector machine in a weighted or layered classification, and to explore potential applications of this
classification tool in other tropical environments.

� 2010 Elsevier Ltd. All rights reserved.
Introduction

Data from satellite sensors has become an important tool for
researchers studying land use and land cover change. Remote
sensing offers the advantage of rapid data acquisition of land use
information at a lower cost than ground survey methods (Pal &
Mathur, 2004) and the analysis of this data can provide critical
insights into the evolving humaneenvironment relationship. In
particular, the analysis of multispectral imagery to detect coastal
land cover and land use change (LCLUC) is growing in importance.
Over 50% of the world’s population now lives within 100 km of
the coast and coastal environmental systems are facing increasing
pressure from multiple stressors ranging from human economic
development activities to sea level rise associated with global
warming (Hwang, 2005). Given the scale and pace of change in
the coastal zone, particularly in tropical regions, the development
of tools which can both monitor coastal change and model the
dynamics of future growth is critically important.

A number of techniques exist to classify coastal land use or land
cover categories in remotely sensed images. Maximum likelihood
classification (MLC) represents the most established approach
þ1 808 956 3512.
.
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(Jensen, 2005). This technique assumes a normal Gaussian data
distribution of multivariate data with pixels allocated to the most
likely output class, or a posterior probability of membership and
dimensions equal to the number of bands in the original image
(Richards and Jia, 2006). This requires users to carefully determine
the classification scheme so that each class follows a Gaussian
distribution, and MLC ideally has to be performed at the spectral
class level. Recent coastal examples of MLC include: a study of land
use change in China which utilized Landsat Thematic Mapper
imagery (Ding et al., 2007); an investigation of land use change of
the Majahual region of Mexico (Berlanga-Robles & Ruiz-Luna,
2002); and the analysis of landscape change produced by tourism
and agriculture development in Egypt (Shalaby & Tateishi, 2007).

Artificial neural networks (ANN) are a more recent non-para-
metric classification technique (Lu & Weng, 2007) which does not
depend upon an assumption of normally distributed data (Dixon &
Candade, 2008; Foody, 2004). In contrast to MLC, ANN can classify
land cover and land use types that are multi-mode or not linearly
separable in the original spectral space. Accurately describing
processes that translate input data into output classes can,
however, be difficult due to the combined use of multiple nonlinear
activation functions at different layers (Kavzoglu & Mather, 2003).
For this reason ANN is often referred to as a “black box” technique
(Qiu & Jensen, 2004). In a coastal context ANN has been used to
produce “fuzzy” maps of land use change in Mexico (Mas, 2004)
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and wetland vegetation coverage in Florida (Filippi & Jensen, 2006).
ANN utilizing a layered thematic classification approach has also
been used to map coastal Argentina (Kandus, Karszenbaum, &
Frulla, 1999) and examine coastal areas of the Gulf of Mississippi
(O’Hara, King, Cartwright, & King, 2003).

Support vector machine (SVM) is one of the latest additions to
the existing catalog of image classification techniques that support
coastal LCLUC analysis. Recent research has demonstrated that
SVM compares favorably with more established classification
techniques (Gualtieri & Cromp, 1998), but the application of this
approach in coastal environments is comparatively understudied.
The purpose of this research is, therefore, to test the applicability of
SVM in a coastal environment and compare the statistical accuracy
of this approach in classifying land cover types against both ANN
and MLC using medium spatial resolution imagery. Tropical coasts
typically include a variety of land cover types such as coral, wet and
dry sand, rock and developed areas. These land covers often possess
very similar spectral signatures and transitions between types can
be extremely gradual which creates significant problems in
defining class separations. SVM utilizes a user-defined kernel
function to map a set of non-linear decision boundaries in the
Fig. 1. Koh Tao
original dataset into linear boundaries of a higher-dimensional
construct (Huang, Davis, & Townshend, 2002). This approach
could be particularly applicable to the suite of problems related to
class separation that researchers typically encounter in attempting
to assess coastal LCLUC and may be particularly suited to applica-
tions in tropical regions.

Study area

The study area for this research is the small Thai island of Koh
Tao which is located approximately 70 km east of the mainland in
the western Gulf of Thailand at 10� 050 latitude and 99� 500 east
longitude (Fig. 1). Included are the main island of Koh Tao and
several smaller surrounding islets which possess a total land area
of approximately 19 km2. The island is 4.5 km at its widest point
and 7.5 km in length, and is dominated by steep granitic hills that
rise to a maximum of 379 m above sea level. A coastal plain exists
at the base of these hills in western and southern areas, with sandy
beaches sporadically located along the island’s rocky northern and
eastern coastline. Land cover is dominated by secondary tropical
forests in the highlands and coconut plantations at lower
Study Area.
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elevations. The island is now known as one of the busiest scuba
diving centers in Southeast Asia with close to one million foreign
and Thai tourists visiting annually (Prince of Songkhla University,
2005). Development has been rapid with over 2500 hotels and
bungalow rooms constructed on the island since the early 1990s,
and a significant percentage of this development has occurred in
close proximity to the coastline.

Methods

Support vector machines

Support vector machines are based on statistical learning
theory as described in Vapnik (1995). The primary objective of the
SVM method is the generation of a hyperplane that represents
the optimal separation of linearly-separable classes in decision
boundary space. Most SVM applications involve the separation of
only two classes by a decision boundary termed the optimal
separating hyperplane (OSH). While many hyperplanes may exist
that provide effective separation, the OSH minimizes classification
generalization errors by maximizing the distance between itself
Fig. 2. False Color Comp
and the planes representing the two classes. Discovering the OSH
therefore requires an optimization solution. The support vectors are
the data points that lie at the edge of each individual class hyper-
plane in feature space and are closest to the OSH (Pal & Mather,
2005; Sanchez-Hernandez et al., 2007). Suppose a set of training
data with k number of samples is represented by the equation:

fxi; yig; i ¼ 1.k (1)

where x 3 Rn is an n-dimensional vector and y 3 {�1, þ1}
represents the label of each class. This set of training data can be
linearly separated by a hyperplane if a vector w and a scalar b can
satisfy the following two inequalities:

w � xi þ b � þ1 for all y ¼ þ1 (2)

w � xi þ b � �1 for all y ¼ �1 (3)

The two equations can also be combined in the following
equation which represents a constraint that must be satisfied to
achieve a hyperplane that completely and linearly separates the
two classes:
osite ASTER Image.



Table 1
Land cover and land use classification scheme and class descriptions.

Class Description Training
pixels

Testing
pixels

Coastal rock Granitic rock formations 256 65
Vegetation All vegetation types

including tropical forest
and coconut plantation

1510 85

Deep water (>3 m) Seaward of nearshore
reefs

3400 103

Shallow water
(1e3 m)

Nearshore areas with
sandy bottom

125 41

Sandy beach Exposed subaerial beach 128 50
Sandy ocean bottom Along reef edge in

medium-depth water
101 45

Developed Residential areas,
commercial development,
roads and infrastructure

111 90
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yiðw � xi þ bÞ � 1 � 0 (4)

The primary objective of SVM is to find the optimal separating
hyperplane (OSH) among all the possible hyperplanes which is
accomplished through an optimization problem utilizing Lagrange
multipliers and quadratic programming methods (Pal & Mather,
2004). For cases where the two classes are not linearly separable,
a set of slack variables {xi}i¼1 is introduced in order to maximize the
distance between class hyperplanes and the OSH while minimizing
the number of classification errors where pixels are classified onto
the wrong class hyperplane:

yiððw� xi þ bÞÞ � 1� xi; xi � 0 (5)

Since this constraint can be met by continually increasing the
value of xi, a function CSi¼1xi, is added to penalize solutions which
exhibit a large value for xi. The constant C is used to control the
degree of the penalty administered for pixels that occur on the
wrong side of the separating hyperplane and, as such, the optimi-
zation problem becomes:

Min
h����w

���2=2
�
þ CSi¼1xi

i
(6)

In order to map nonlinear data into a higher-dimensional space
for the generation of a linearly separating hyperplane, a mapping
function F is used. Input data is therefore represented as F(x),
which is the conversion of input vector x in feature space into
a constructed space of n dimensions. This can be computationally
expensive as n increases, so a kernel function is chosen:

K
�
xi; xj

� ¼ FðxiÞ � F
�
xj
�

(7)

This kernel function allows for the training data to be projected in
a larger space where it may be increasingly possible to discover
a superior separating margin for the OSH. Two commonly used
kernels utilized today in SVM solutions are the polynomial-based
and radial basis function (RBF) kernels. The choice of kernel used for
a problem and the parameters selected can have an effect on the
speed and accuracy of the classification. Previous research has
demonstrated tradeoffs between different levels of performance
betweenpolynomial-based andRBFkernels (Zhu&Blumberg, 2002).

Imagery

An image from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) sensor mounted on NASA’s Terra
satellite was acquired for this research. This sensor incorporates
three subsystems scanning visible and near infrared, shortwave
infrared, and thermal infrared spectral regions with spatial reso-
lutions of 15e90 m. A 15-m resolution visible and near infrared
image acquired on 22 June 2004 of the study area was available
and selected for use in this study (Fig. 2). ASTER data has
previously been used to obtain high overall accuracy using support
vector machines (Zhu & Blumberg, 2002) and this platform was
chosen because of its spatial and spectral resolution characteristics
and the availability of a relatively cloud-free image. Clouds did
obscure a small portion of the study area necessitating the creation
of a limited cloud mask in the eastern portion of the island to
prevent this area from being used in the training process. Red areas
in the image represent the near infrared band that exhibits high
reflectivity and is heavily vegetated.

Classification scheme, fieldwork and analysis

Although support vector machines typically adopt binary clas-
sification schemes (Hsu & Lin, 2002; Melgani & Bruzzone, 2004),
more recent studies have investigated its use in multiclass
approaches that more accurately reflect the presence of multiple
land cover categories. This study adopts a multiclass scheme con-
sisting of seven land cover types based on representativeness in
the image, identified spectral differences and knowledge of the
study area (Table 1). Fieldwork conducted during November 2007
produced 98 GPS points that facilitated the selection of training
and testing pixels from the ASTER image. A majority of these sites
were located in developed areas of the island based on this study’s
focus on human activities in the coastal zone. Specific areas of
interest included Sai Ree on the west coast of Koh Tao and Chalok
Ban Kao which is situated in the south. Both areas have hotels and
tourist bungalows constructed on either rocky coastlines or on
a sandy coastal plain that was previously dominated by coconut
plantations. Spectrally and spatially diverse areas were chosen for
training and testing to improve the validity and accuracy of clas-
sification results. A summary of pixel selection is provided inTable 1.

Library for Support Vector Machines (LIBSVM) software was
adopted for the SVM analysis because it has produced high-quality
results and required limited training time in previous studies (Pal &
Mather, 2005). Binary executables were used to create and test
the training model, while analysis of the SVM parameters utilized
a Python script written by the LIBSVM authors (Chang & Lin, 2001).
ENVI 4.2 imagery analysis software was used for the MLC and
ANN classifications. Identical training and testing pixels were
used in all three classifiers to minimize evaluation bias, and an
individual search for ideal parameters was conducted to obtain
optimum classification results. Ground-truthing with separate
testing pixels was employed to calculate overall accuracies and to
produce confusion matrices. Comparisons of classification results
for both computed accuracy and visual accuracy utilized a priori
knowledge of the study site from both in situ fieldwork and
communication with local residents. Historical aerial photography
and the original ASTER imagewere also used for this purpose. Areas
of focus for the visual search included roads, smaller developed
areas embedded within larger homogenous forest classes, and
developed areas along rocky and sandy coastlines which possess
spectral similarities.

Results

Land cover classification maps for the 15-m resolution ASTER
image were produced using MLC, ANN and SVM supervised clas-
sification techniques. Confusion matrices for each classification
technique were produced to analyze class separation performance
for each technique with overall accuracy assessed at 93.95%, 94.99%
and 94.15% for MLC, ANN and SVM respectively (Table 2). The



Table 2
Land cover and land use classification accuracy (%) of three classifiers.

MLC ANN SVM

Producer Accuracy User Accuracy Producer Accuracy User Accuracy Producer Accuracy User Accuracy

Coastal rock 80 86.67 83.08 87.1 93.85 79.22
Vegetation 100 100 100 100 100 100
Deep water 99.03 100 100 100 100 96.26
Sandy beach 100 91.11 100 89.13 100 95.35
Shallow water 86 87.76 92 100 86 93.48
Sandy ocean bottom 100 100 100 100 93.33 100
Developed 91.11 88.17 90 88.04 84.44 96.2
Overall accuracy 93.9% 94.99% 94.15%
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similarity in overall accuracy is likely due to a combination of
the land cover classification scheme utilized as well as the medium
spatial resolution of the image. MLC exhibited highly accurate
overall results, yet was markedly less effective in the separation
of coastal rock, developed and shallow water classes. Only 52 of
65 coastal rock test pixels were classified correctly with most
misclassified pixels in the developed class. This was both expected
and understandable as these classes are often not definitively
separated on the ground. While coastal rock that surrounds the
island is usually dry, dampening can often occur as a result of
wave splash and run-up. Both of these processes can encircle dry
rock features in a thinly submerged layer of ocean water (Fig. 3a)
and potentially affect NIR reflectivity of the entire pixel. Less
densely developed coastal areas of the island can also produce
spectral signatures similar to coastal rock as a result of their limited
spatial footprint and use of reflective construction materials.

Results of the neural network classification paralleled those of
the MLC after the training threshold contribution was reduced
from 0.9 to 0.1 in ENVI (Table 2). Multiple iterations of the network
proved this threshold to be the optimum value for maximizing
classification performance. Only five additional pixels were
correctly classified compared to MLC with deep water, vegetation
and sandy oceanic bottom classes all perfectly classified. ANN did
outperform MLC for both coastal rock and shallow water classes
Fig. 3. Classificat
which is significant given the objectives of this study. A noticeable
difference between ANN and MLC also occurred with respect to
the classification of the shallow water class. These areas are unique
in their potential complexity with non-uniform surface conditions,
changing water depth, and particle suspension characteristics
resulting from wave energy in the surf zone. The neural network
classification technique performed admirably on this class, and
it would appear that the dynamic and unpredictable physical
nature of the surf zone is well suited to a non-parametric classifi-
cation approach.

Support vector machine also produced a high overall accuracy
and minimal errors for the vegetation, deep water, sandy beach
and sandy ocean bottom classes (Table 2). It is, however, interesting
to note that this approach performed differently than the other
two classifiers with respect to the separation of developed and
coastal rock areas. While there was somemisclassification between
the two classes in both directions for all three classifiers, commis-
sion errors for both classes using SVM were substantially less than
those of MLC and ANN. Omission rates for MLC and ANN were
also higher than SVM for the developed and coastal rock classes.
These results indicate that the optimal separating hyperplane
integral to the SVM method was oriented in a different position in
feature space than the decision boundaries generated by the
MLC and ANN algorithms. SVM did not, however, identify sandy
ion Images.
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ocean bottom as well as the other two classifiers (Fig. 3). This error
stems from amisclassification of sandy ocean bottom as deepwater
by SVM which is evident in the lower producer accuracy for
sandy ocean bottom and lower user accuracy for deep water (Table
2). Understanding the differences in performance and trade-offs
involved for each classifier is important when choosing the
optimum classification tool for a given scene or application. The
“correct” or “most appropriate” classifier is ultimately a subjective
decision that reflects both research objectives and characteristics of
the data.

Discussion

Overall classification performance

The high overall classification accuracy generated by the support
vector machine in this study suggests that this approach may be
useful in conducting rapid land cover analyses in coastal areas
characterized by low to moderate rates of development. SVM did
not, however, significantly outperform the maximum likelihood
or artificial neural network classification techniques in this
comparison. All three techniques were able to separate developed
areas from surrounding land cover types exhibiting similar spectral
signatures and generate similarly high accuracies (w94%) for
the land cover classification scheme utilized in this study. Three
main factors likely produced the uniformly high performance levels
for all three classification techniques in this test. First, the preva-
lence and high separability of the deep water class undoubtedly
contributed to uniformly high overall accuracy levels. An exami-
nation of the scatter plots of near infrared and visible red energy
showed no spectral overlap between deep water and the other
classes which supports this assumption. Second, the limited spatial
representation of other classes (shallow water, sandy beach, sandy
ocean bottom, developed) also likely contributed to high overall
performance scores by restricting both the amount and spectral
diversity of test pixels. This situation likely led to an “overfitting” of
the data. Third, a single developed class was used in this study
which encompassed land cover pixels representing both low
density tourist bungalows surrounded by vegetation and the more
urbanized small villages on Koh Tao. Small island study areas such
as Koh Tao typically possess a relatively small number and diversity
of pixels exhibiting different development types, and this limits
opportunities to create valid multi-class tests for the developed
Fig. 4. Scatter Plots of Training Pixels. X axis ¼ DN of ASTER v
class. Future research utilizing finer resolution imagery situated in
amore heavily developed coastal area could focus on this particular
issue, and could potentially reveal additional significant differences
between the three classification techniques with respect to overall
classification accuracy.

Individual class performance

Evaluations at the individual class level were also performed to
compare the performance of support vector machine against
maximum likelihood and artificial neural network techniques in
classifying coastal environments with similar spectral signatures
and gradual class transitions (Table 2). Specific class comparisons
included:

� developed areas versus coastal rock,
� developed areas versus vegetation, and
� developed areas versus sandy beach.

The support vector machine performed well in separating the
developed and coastal rock classes. Coastal rock was correctly
classified for 93.85% of the test pixels while the developed class
was correctly classified for 84.44% of all test pixels. Each classified
set of this binary pair also included incorrectly classified test pixels
which suggests that support vectors for each class were not
linearly separable with one hyperplane due to spectral similarities.
Examination of the scatter plot (Fig. 4a) of visible red and near
infrared bands clearly reveals significant overlap in feature space of
these two land cover types. MLC misclassified an equal number of
test pixels incorrectly as compared to SVMwhile ANNmisclassified
just three additional pixels. These results suggest no clear advan-
tage of SVM for this particular binary class separation, but visual
inspection of the classified images (Fig. 3) revealed that MLC mis-
classified substantially fewer inland developed areas as coastal rock
than either ANN or SVM.

The pattern of development between Sai Ree along the western
coast to Chalok Ban Kao in the south portion of Koh Tao was also
effectively separated from the adjacent vegetation and coastal rock
perimeter in all three classifications. It was expected that high
density developed areas such as Mae Haad would be easily sepa-
rable, but we anticipated some degree of misclassification between
areas of vegetation and those possessing lower density develop-
ment (e.g., bungalows and small-scale construction interspersed
isible red band/Y axis ¼ DN of ASTER near infrared band.
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among grass and trees). Surprisingly, all areas of development
irrespective of density were accurately separated from vegetation
by all three of the classification techniques. This result was
produced by a clear separation in feature space and training pix-
el selection (Fig. 4b). Analysis of post-classification confusion
matrices suggest that the support vector machine is somewhat
better suited to separating areas of low to medium development
from coastal rock and sandy beach, but minimal differences in
accuracy existed between the three techniques for this class
comparison. It would be useful to perform additional analysis on
other images at the same site over different time periods to
support this result. This would confirm whether our findings are
indicative of a true performance advantages for the support vec-
tor machine as opposed to random data noise or imagery error.

Tropical coastal areas that host significant tourism infrastruc-
ture typically display a significant amount of development along
sandy beaches and Koh Tao is very representative of this gener-
alization. The analysis of confusion matrices once again revealed
no significant performance advantage for SVM over the other
techniques with respect to the separation of the development and
sandy beach classes. All three techniques proved highly accurate in
this test with very few misclassified pixels in either direction.
Examination of the scatter plot (Fig. 4c) and visual inspection of
the classified images revealed that SVM misclassified fewer pixels
as sandy beach in the southern road confluence than either MLC or
ANN. This suggests a slight performance improvement associated
with the support vector machine in this particular class separation,
but it would be useful to test this potential performance advantage
against a larger data set from similar shorelines to confirm these
results.

Conclusions

Coastal areas in the tropics often display a fragmented,
heterogeneous landscape arising from absent or ineffective local
planning or planning directed from geographically distant insti-
tutions (Olsen & Christie 2000). Monitoring land cover to detect
development trends is, therefore, highly useful in this context and
remote sensing technology can certainly play an important role
in the analysis of land use and land cover change. The findings of
this study suggest that the support vector machine can perform
adequately as coastal land cover classification tool using medium-
scale imagery. Although SVM did not produce significantly better
results than the MLC or ANN techniques, it did produce
a “tighter” fit for classifying coastal rock and produced fewer
commission errors in classifying developed areas than either MLC
or ANN. The support vector machine also performed slightly
better than MLC and ANN with respect to important binary
separations such as developed versus coastal rock and developed
versus sandy beach. These distinctions may be important for
future studies monitoring coastal change in tropical coastal
environments similar to Koh Tao. Although the focus of this study
was the relative performance of the support vector machine
image classification technique in a tropical coastal environment,
a combination of classification rules from multiple classifiers
could also potentially produce excellent classification accuracies.
This approach is not uncommon in LCLUC studies (Li, Hu, & Li,
2008) and future research could specifically target the relative
benefits of including SVM in a multiple classifier approach situ-
ated within a tropical coastal environment. As coastal develop-
ment continue to increase as a result of current population
trends, it is important that future studies in applied geography
continue to investigate classification tools such as SVM which
support planning efforts that attempt to balance socioeconomic
needs and conservation goals.
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