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Abstract Accurate sea-level rise (SLR) vulnerability assessments are essential in developing
effective management strategies for coastal systems at risk. In this study, we evaluate the effect
of combining vertical uncertainties in Light Detection and Ranging (LiDAR) elevation data,
datum transformation and future SLR estimates on estimating potential land area and land
cover loss, and whether including uncertainty in future SLR estimates has implications for
adaptation decisions in Kahului, Maui. Monte Carlo simulation is used to propagate
probability distributions through our inundation model, and the output probability surfaces
are generalized as areas of high and low probability of inundation. Our results show that
considering uncertainty in just LiDAR and transformation overestimates vulnerable land area
by about 3 % for the high probability threshold, resulting in conservative adaptation decisions,
and underestimates vulnerable land area by about 14 % for the low probability threshold,
resulting in less reliable adaptation decisions for Kahului. Not considering uncertainty in future
SLR estimates in addition to LiDAR and transformation has variable effect on SLR adaptation
decisions depending on the land cover category and how the high and low probability
thresholds are defined. Monte Carlo simulation is a valuable approach to SLR vulnerability
assessments because errors are not required to follow a Gaussian distribution.

1 Introduction

Natural and human coastal systems with low elevations are most vulnerable to global sea-level
rise (SLR). The causes of SLR are due to the physical processes of thermal expansion of ocean
waters, and the release of land-based ice into the ocean (Meehl et al. 2007). Average global sea
level is rising at a current rate of 3.2±0.4 mm/year (Church and White 2011). Accelerated SLR
complicates natural and human coastal systems’ ability to adapt (Schaeffer et al. 2012).
Consequently, accurate SLR vulnerability assessments are of great significance to better
prepare vulnerable coastal systems for rising seas (U.S. Climate Change Science Program
2009; Gesch 2009).
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Uncertainty is just as important as the SLR vulnerability assessments that are useful for
coastal managers and scientists. SLR vulnerability assessments are more reliable when they
account for uncertainty (Purvis et al. 2008; Gesch 2009; Gesch 2013). Although it is difficult
to quantify some uncertainties such as future coastal development and infrastructure, it is easy
to quantify elevation uncertainties in Light Detection and Ranging (LiDAR), any offsets
between tidal and orthometric datums and datum transformations. In order to make informed
decisions based on these support tools, it is better to consider quantifiable sources of
uncertainties in SLR vulnerability assessments.

LiDAR Digital Elevation Models (DEMs) are more often being used as the principal data
layer in SLR vulnerability assessment (e.g., Poulter and Halpin 2008; Zhang 2011). The
uncertainty in LiDAR is sometimes quantified as the standard deviation (σ), but most
commonly, LiDAR error is calculated using National Standard for Spatial Data Accuracy
(NSSDA; FGDC 1998) procedures for the Root Mean Square Error (RMSE) and linear error at
the 95 % confidence interval. It is important to note that the NSSDA linear error is based on
the assumptions that: 1) errors follow a Gaussian distribution, and 2) the elevation data has a
zero bias so that the RMSE may be used in place of the standard deviation (σ) (Cooper et al.
2013). This is important for the following approaches that consider error in SLR vulnerability
assessment. LiDAR error is addressed where the NSSDA linear error is mapped above (Gesch
2009) and below (Gesch 2012; Gesch 2013) the inundation extent. Building on this approach,
Gesch (2013) combines LiDAR RMSE with local water levels and transformation among tidal
datums (quantified as σ in NOAA’s VDatum estimates; National Oceanic and Atmospheric
Administration NOAA 2012) using summing in quadrature. The approach by National
Oceanic Atmospheric Administration (NOAA) (2010), also implemented by Mitsova et al.
(2012), takes into account the LiDAR RMSE and offset between tidal and orthometric datums
quantified as σ and ‘assumes that the RMSE is analogous to the σ (i.e. the data are not biased),
which allows for the generation for a type of z-score or “standard score” from the data’
(National Oceanic Atmospheric Administration NOAA 2010: 3). However, sometimes LiDAR
are biased limiting these approaches that require all uncertainties to follow a Gaussian
distribution with zero bias (Cooper et al. 2013).

Assessing SLR vulnerability calls for an additional approach that does not require all
uncertainties to follow a Gaussian distribution with zero bias. Future SLR estimates constitute
another important source of uncertainty that is often overlooked. This may be because it is not
common practice to complete a formal probability analysis on SLR projections. This has led to
the approach by Purvis et al. (2008) to formalizing the unknown real distribution (e.g. whether
Gaussian, non-Gaussian, uniform, etc.) of SLR estimates in terms of a triangular distribution.
A Monte Carlo approach would allow for the consideration of SLR estimates formalized as a
triangular distribution in addition to LiDAR that follow a non-Gaussian distribution. Monte
Carlo is a technique to propagating distributions by random sampling from probability
distributions, which is useful when uncertainties depart from a Gaussian distribution or scaled
and shifted t-distribution (JCGM and Joint Committee for Guides in Metrology 2008).
Therefore, Monte Carlo simulation is a valuable approach to SLR vulnerability mapping
because errors are not required to follow a Gaussian distribution.

The purpose of this study is threefold: 1) to extend the approach by National Oceanic
Atmospheric Administration (NOAA) (2010) to Monte Carlo simulation so that we may
include uncertainty in future SLR estimates, 2) evaluate the effect of combining uncertainties
in LiDAR, transformation and future SLR estimates on estimating potential land area and land
cover loss, and 3) examine whether including uncertainty in future SLR has implications for
adaptation decisions in Kahului, Maui. The following section introduces the study area and
LiDAR data. Section III presents methods to calculate local water levels and transform the
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LiDAR DEM between vertical datums, formalizing future SLR estimates as a probability
distribution, and probability inundation modeling. Section IV reports results and discussion.
The final section V presents conclusion and areas for future research.

2 Study area and LiDAR data

2.1 Study area

The study area (8.7 km2) of Kahului is located in a low-relief isthmus along the north central
shore of the Island of Maui, Hawai‘i, and is between two shield volcanoes: the extinct West
Maui volcano and dormant Haleakalā volcano to the east (Fig. 1). Two parks serve as a
favorite destination for locals: (1) Kahului Harbor Park for the fishing pier and wave quality,
and (2) Kanaha Beach Park for kiteboarding and windsurfing due to the funneling effect
produced by the northeast trade winds blowing between the West Maui and Haleakalā
volcanoes. Since Kahului is the largest community in Maui with a Census 2010 population
of nearly 26,000, it also serves as the Island’s industrial, commercial, and urban centers.
Adjacent to the Central Maui Wastewater Facility and Kahului Airport is the 235 acre wetlands
of Kanaha Pond State Wildlife Sanctuary managed by the state of Hawai‘i Department of
Natural Resources, and owned by the Department of Transportation (i.e., Kahului Airport).
Kanaha Pond State Wildlife Sanctuary was designated a National Natural Landmark in 1971
and serves as a wildlife refuge for endangered Hawaiian water bird species such as the ae‘o
(Hawaiian stilt), koloa maoli (Hawaiian duck) and the ‘alae ke‘oke‘o (Hawaiian coot). It
consists of four land cover classifications: open water, palustrine emergent wetland, palustrine
scrub shrub wetland, and palustrine forested wetland. Fluctuations in groundwater in Kahului
correlate highly with fluctuations in local sea level (Rotzoll and El-Kadi 2008). Land elevation
ranges from 0 to 30 m above local Mean Higher High Water (MHHW), with a mean elevation
<6 m, as identified from the tidally adjusted LiDAR DEM. As a result, Kahului makes a prime
location for SLR vulnerability mapping studies.

Fig. 1 Location of study area Kahului, Maui, and the main Hawaiian Islands chain
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2.2 LiDAR data

The current best-available LiDAR data for Kahului is 2007 United States Army Corps of
Engineers (USACE) LiDAR. USACE contracted Joint Airborne LiDAR Bathymetry
Technical Center of Expertise (JALBTCX) for airborne topographic LiDAR data collection
along the northern coast of Maui from 11 through 27 January 2007 using an Optech Inc.,
SHOALS-3000 instrument. The vendor post-processed the LiDAR data using TerraScan
software, and the delivered product was a file of xyz points defined in a coordinate system
designated as either “unclassified state” or “ground.” The nominal post-spacing quoted is
approximately 1.3 m between points. The vendor tested the LiDAR return file against ground
truth data using post-processed kinematic GPS with a horizontal error of ±0.75 m (1 σ) and
vertical error of ±0.20 m (1 σ). Since no information on the data distribution is provided for
Monte Carlo simulation, we consider the quoted vertical error of 0.20 m (σ) and assume a
Gaussian distribution and that the data provider followed NSSDA (FGDC 1998) guidelines.
Toolbox for LiDAR Data Filtering and Forest Studies (Tiffs) software (Chen 2007) uses a
morphological method for filtering LiDAR ground returns, which was implemented for
refining the filtering results from TerraScan to extract ground points using the filtering
parameters: a) there are at least 2 ground points within 20 m, b) ground points are less than
0.2 m above ground, and c) minimum ridge slope is 0.1°, before generating a 2 m LiDAR
DEM.

3 Methods

Here, we provide an overview of our methods. The LiDAR is transformed from Mean Sea
Level (MSL) to MHHW using tidal benchmarks and local water levels at the Kahului Harbor
tide station for a tidally adjusted DEM. It is not common practice to complete a formal
probability analysis on SLR projections, so we utilize the approach by Purvis et al. (2008) to
formalizing the unknown real distribution of SLR estimates in terms of a triangular
distribution. Monte Carlo simulation is used to propagate LiDAR, transformation and SLR
estimates probability distributions through our inundation model. The output probability
rasters are generalized as areas of high and low probability of inundation, which are used to
determine the effect of combining uncertainties on assessing vulnerable land area and land
cover for Kahului, Maui.

3.1 Local water levels

No conversion between orthometric and tidal datums is necessary for the LiDAR. This is
because there is currently no accepted orthometric datum for the state of Hawai‘i (such as
NAVD 88 for the contiguous U.S.). NOAA and NGS are in charge of orthometric datums in
the U.S. and its territories, and Hawaiian Islands vertical datum is a work in progress (National
Geodetic Survey NGS 2012). Until then, LiDAR are vertically referenced to local MSL
defined by the primary tide station on the respective Hawaiian Island.

Local water level heights are used to measure vertical datums also known as tidal datums.
In the U.S. and related territories, water level observations are collected and distributed by
National Ocean Service (NOS) Center for Operational Oceanographic Products and Services
(CO-OPS; http://tidesandcurrents.noaa.gov/). Tidal datums such as MSL and MHHW are
defined by a certain phase of the tide at a fixed tide station location (National Oceanic
Atmospheric Administration NOAA 2003). MSL is the average of the mean sea level
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heights of each tidal day (collected in 6-minute intervals), and MHHW is the average of the
mean higher high water heights of each tidal day (collected in 6-minute intervals), both
observed over a National Tidal Datum Epoch (NTDE) of 19 years (National Oceanic
Atmospheric Administration NOAA 2003). A series length of 19 years is chosen because it
has astronomic significance (it considers the 18.61 year lunar cycle; Hicks 2006). It is
important to note that non-astronomical short-term changes such as wave setup and coastal-
trapped eddy waves may not be as significant over a 19 year average as are longer-term
oscillations such as southern oscillation and pacific decadal oscillation. However, the amount
of variability in this time span that is affected by these longer-term changes is not considered.
The current NTDE is 1983 through 2001, with local MSL value of 1.075 m above Station
Datum, and MHHW value of 1.422 m above Station Datum observed at the Kahului Harbor
tide station. The Station Datum is defined as a fixed base established at an elevation below the
water that is used for referencing tidal datums (http://tidesandcurrents.noaa.gov/; also
see Fig. 3 in Cooper et al. 2013). Hence, local water levels averaged as a tidal datum
serve as an important vertical reference system.

The LiDAR is vertically referenced to MSL tidal datum, but it is unclear to which
tidal datum epoch. We assume best practices by the LiDAR provider is to reference
the data to MSL for a series length of 19 years that agrees with the time of data
collection, and not the current NTDE of 1983 through 2001. A transformation from
MSL to MHHW is necessary because we are mapping future SLR above the highest
watermark where land is inundated daily. Therefore, monthly averages of verified
water levels of MSL and MHHW are obtained for Kahului Harbor tide station from
January 1988 through December 2006 from NOS CO-OPS to match the time of
LiDAR data collection. Then we compute the average of the MSL elevations of each
month to define MSL (1988–2006 epoch; Table 1). Since the LiDAR is tested against
tidal benchmarks referenced to MSL 1983–2001 epoch to calculate a mean vertical
error (i.e., bias of 9 cm; Cooper et al. 2012), this bias needs to be adjusted to the
MSL 1988–2006 epoch. Therefore, the difference between MSL 1988–2006 epoch
(1.09 m) and MSL 1983–2001 epoch (1.075 m) of 1.5 cm is used to adjust the 9 cm
mean vertical error to 7.5 cm. As a result, the LiDAR is decreased by 7.5 cm to
correct for this bias. The MSL 1988–2006 epoch constant is also used to compute the
standard deviation (0.06 m) and mean difference (0.35 m) between varying monthly
MHHW from 1988 to 2006 (Table 1), and we infer a Gaussian distribution from an
observed frequency distribution. The LiDAR values are then decreased by the mean
difference (0.35 m). Accordingly, the LiDAR is transformed from MSL to MHHW
1988–2006 epoch for a tidally adjusted LiDAR DEM.

Table 1 Descriptive statistics for verified monthly water levels observed over 19 years from January 1988
through December 2006 at the Kahului Harbor tide station on Maui Island. Where MSL=Mean Sea Level,
MHHW=Mean Higher high water, μ=mean, n=the number of monthly observations, σ=standard deviation,
ΔMHHW=the difference between monthly MHHWobservations and 19 year MSL. Data downloaded from http://
tidesandcurrents.noaa.gov/

Tidal datum (1988–2006) μ (m) Median (m) Skew σ (m) n Minimum (m) Maximum (m)

MSL 1.09 1.09 0.07 0.0568 228 0.95 1.27

MHHW 1.44 1.44 −0.12 0.0600 1.29 1.59

ΔMHHW 0.35 0.35 −0.12 0.0600 0.20 0.50
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3.2 Formalizing SLR estimates

Stating SLR estimates as a probability distribution is necessary to account for the uncertainty
in the range of those estimates. The current MSL trend for Kahului (2.32±0.53 mm/year;
http://tidesandcurrents.noaa.gov/sltrends/) is less than the global average (3.2±0.4 mm/year;
Church and White 2011). While regional SLR estimates and their timing are ideal for coastal
inundation mapping, there are currently no comprehensive assessments for Hawaiian coasts.
Therefore, we consider recent global SLR estimates identified by Schaeffer et al. (2012) using
the Representative Concentration Pathway (RCP) 4.5. Schaeffer et al. (2012) estimate global
SLR in the range of 0.64–1.21 m with a central median value of 0.9 m by year 2100 (relative to
2000 levels) using the RCP4.5 scenario. Although there is no evidence of skewed data, there is
also no information provided on the mean, standard deviation, and frequency distribution of
these estimates to assume symmetry. We proceed by approximating the unknown real
distribution (e.g. whether it is Gaussian, non-Gaussian, uniform, etc.) as a triangular
distribution closely following Purvis et al. (2008). A probability of 0 is assigned to any SLR
values below 0.64 or above 1.21 m (assuming the best-case scenario where ice sheet collapse
does not exceed a SLR of 1.21 m by 2100). Then a probability of 0.5 is assigned to the ranges
0.64–0.9 m and 0.9–1.21 m, respectively. This allows us to state a probability of 1 for SLR
between 0.64 and 1.21 m by 2100. It follows that the probability of SLR (PSLR) in meters is
given using the following equation:

PSLR∣SLR < 0:64 ¼ 0
PSLR∣SLR > 1:21 ¼ 0

X

PSLR¼0:64

0:9

PSLR ¼
X

PSLR¼0:9

1:21

PSLR ¼ 0:5

X

PSLR¼0:64

1:21

PSLR ¼ 1

ð1Þ

It is also reasonable given the information provided on the range and median, although not
absolutely necessary, that the median of 0.9 m is likely correct. Thus, we arrive at a triangular
function as the most basic probability distribution that fits these data (Fig. 2). As a result, the
future SLR estimates are formalized as a probability distribution so that we may consider their
uncertainty in the vulnerability mapping.

Fig. 2 Probability distribution for sea-level rise by 2100 derived using Purvis et al. (2008) approach to
formalizing RCP4.5 scenario estimates by Schaeffer et al. (2012). Sea-level rise values are in meters
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3.3 Mapping coastal inundation

Two approaches are used for mapping coastal inundation. First, all grid cells in the LiDAR
DEM with elevations below the SLR median of 0.9 m hydrologically and not hydrologically
connected with the ocean and wetland are identified to produce a raster that considers no
uncertainty. Second, uncertainty is considered using Monte Carlo technique to propagate
probability distributions through our probability inundation model. The following equation
is used to consider LiDAR and transformation uncertainty:

Px;y ¼
X

σΔMHHW þ SLR > LiDARþ LiDARx;y

� � ð3Þ

where Px,y is the probability of a grid cell at x,y location of being inundated taking a value
anywhere from 0 to 1, σΔMHHW is a random variable sampled from Gaussian distribution (0,
0.06), SLR is the constant median of 0.9 m, LiDAR is a random variable sampled from
Gaussian distribution (0, 0.2), and LiDARx,y is a constant elevation value of a grid cell at x,y
location all in meters. The following equation is used to consider LiDAR, transformation and
SLR estimates uncertainty:

Px;y ¼
X

σΔMHHW þ SLRr > LiDARþ LiDARx;y

� � ð4Þ
where the only difference from Eq. 3 is that SLRr is a random variable sampled from a triangle
distribution with a range between 0.64 and 1.21 and most probable value (0.9). The sampling
procedure for both Eqs. 3 and 4 is repeated 10,000 times for each grid cell. The outputs are a
new 2 m resolution raster where each grid cell contains a probability value anywhere between
0 and 1 of being inundated.

3.4 Assessing vulnerable land area

The rasters that consider 1) no uncertainty, 2) uncertainty in LiDAR and transformation, and 3)
uncertainty in LiDAR, transformation and SLR estimates are used to calculate vulnerable land
area. The raster that considers no uncertainty is converted to a polygon layer. The two probability
rasters are generalized using a ranking scheme similar to National Oceanic Atmospheric
Administration (NOAA) (2010). The probability rasters are reclassified by assigning the range
of probability values 0–0.19 equal to 0, 0.19–0.79 equal to 20 (low probability), and 0.79–1
equal to 80 (high probability). The two generalized probability rasters are used to produce four
generalized polygon layers that 1) include uncertainty in LiDAR and transformation at either the
high or low probability thresholds, and 2) include uncertainty in LiDAR, transformation and
SLR estimates at either the high or low probability thresholds. As in NOAA’s Coastal Services
Center (CSC) SLR mapping visualization tool (http://www.csc.noaa.gov/slr/viewer), we do not
distinguish submerged areas hydrologically connected with the ocean differently from areas not
hydrologically connected with the ocean. The polygon layer that considers no uncertainty and
the four generalized probability layers are then used to calculate total land area vulnerable to
potential inundation. Therefore, the effect of uncertainty on land area inundated can be assessed.

3.5 Assessing vulnerable land cover

The generalized probability layers at either the high or low probability thresholds that 1)
include uncertainty in LiDAR and transformation, and 2) include uncertainty in LiDAR,
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transformation and SLR estimates are used together with high resolution land cover data to
determine the effect of these uncertainties combined on probable land cover loss. NOAA CSC
Coastal Change Analysis Program (C-CAP) land cover was derived for Maui Island by
delineating high resolution Quickbird multispectral scenes collected 20 November 2005.
The C-CAP land cover layer is converted to polygon and intersected with the generalized
probability layers to calculate the area. For each of the high and low probability thresholds, the
difference between the area of a land cover classification inundated when considering
uncertainty in 1) LiDAR and transformation, and 2) LiDAR, transformation and SLR
estimates is calculated. As a result, we can evaluate the effect of combining these uncertainties
on estimating potential land cover loss.

4 Results and discussion

4.1 Difference in probability

A difference grid was generated by reducing the probability raster that includes 1) uncertainty
in LiDAR, transformation and SLR estimates by the probability raster that 2) includes
uncertainty in LiDAR and transformation to examine the impact of including uncertainty in
SLR estimates on identifying a grid cell’s probability being inundated. The difference is shown
in Fig. 3a, b. It follows that the difference in the probability of potential inundation between the

Fig. 3 Difference (Δ) between the probability raster that considers uncertainty in LiDAR, transformation and
sea-level rise (SLR) estimates, and probability raster that considers uncertainty in LiDAR and transformation (a).
The Δ probability profile through Kanaha Pond State Wildlife Sanctuary demonstrates areas either over or
underestimated when we do not consider uncertainty in SLR estimates (b)
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two rasters ranges 10 % (see Fig. 3a). In particular, the difference in the probability profile
through Kanaha Pond State Wildlife Sanctuary (Fig. 3b) demonstrates areas that are either
under or overestimated when we do not consider uncertainty in future SLR estimates. These
results show that the probability of a grid cell being inundated in the raster that considers
uncertainty in just LiDAR and transformation varies in over and underestimating potential
inundation.

4.2 Effect of uncertainty on land area

The land area vulnerable to potential inundation under the three cases is summarized in
Table 2. The sum of vulnerable land area is consistently understated when considering no
uncertainty. It results that there is a −32.2 % difference in land area inundated when compared
to considering uncertainty in LiDAR and transformation, and a −40.4 % difference in land area
inundated when compared to considering uncertainty in LiDAR, transformation and SLR
estimates. The sum of vulnerable land area for both the high and low probability thresholds
shown in Table 2 is also understated by −6.8 % when considering uncertainty in LiDAR and
transformation alone. Additionally, considering uncertainty in just LiDAR and transformation
overestimates land area by +2.6 % for the high probability threshold, and understates
vulnerable land area by −14.1 % for the low probability threshold.

Using the confidence interval approach to mapping coastal inundation uncertainty by Gesch
(2013), the vulnerable land area should be reported as a range and not a single number. Our
Monte Carlo approach suggests that vulnerable land area can also be reported as a single
number while considering uncertainty (Table 2). Furthermore, previous studies show that not
considering uncertainty in LiDAR (Gesch 2009) or future SLR estimates (Purvis et al. 2008)
underestimates the sum of vulnerable land area. Our results show that the sum of vulnerable
land area for both the high and low probability thresholds is also understated when considering
uncertainty in just LIDAR and transformation. However, considering uncertainty in just
LiDAR and transformation can either under or overestimate vulnerable land area depending
on how the high and low probability thresholds are defined. If lands vulnerable at the high
probability threshold are considered first priority for adaptation measures, then decision
makers who utilize these assessments that ignore uncertainty in SLR estimates will make
conservative decisions for Kahului because vulnerable land area is slightly overestimated. On
the other hand, lands vulnerable at the low probability threshold may be considered second
priority for adaptation decisions, and decision makers who utilize these assessments that ignore
uncertainty in SLR estimates will make less reliable decisions for Kahului because vulnerable
land area is underestimated. This suggests that considering uncertainty in future SLR estimates
is essential when defining the sum of vulnerable land area, and when defining areas vulnerable
at the low probability threshold, at least in our study area.

Table 2 The effect of a) no uncertainty, b) uncertainty in LiDAR DEM and transformation, and c) uncertainty in
LiDAR DEM, transformation and SLR estimates on total land area inundated. Where Σ=sum

Probability No uncertainty
(area km2)

Uncertainty in LiDAR DEM and
transformation (area km2)

Uncertainty in LiDAR DEM, transformation
and SLR estimates (area km2)

High 0.268 0.261

Low 0.316 0.364

Σ 0.422 0.584 0.625

Climatic Change (2013) 121:635–647 643



4.3 Effect of uncertainty on land cover

The difference in area of a land cover category potentially inundated at each of the high and
low probability thresholds when considering uncertainty in 1) LiDAR and transformation, and
2) LiDAR, transformation and SLR estimates is shown in Fig. 4. In exception to no difference
in cultivated land cover when considering uncertainty in just LiDAR and transformation at the
high probability threshold, the percentage within all other land cover classifications is
consistently overestimated in a range from 0.4 % to 29.9 %. On the other hand, considering
uncertainty in just LiDAR and transformation at the low probability threshold consistently
underestimates the percentage within all land cover classifications where cultivated and
estuarine forest wetland land cover differences are small (0.03 % and 0.06 %), and all other
land covers are underestimated in a range from 4 % to 27 %.

One study uses LiDAR to examine the effect of inundation on land cover (Chust et al.
2010), while few studies examine the effect of inundation on land cover while considering
uncertainty in LiDAR (Gesch 2009), and LiDAR and transformation (Gesch 2013). Here, we
apply possible adaptation approaches from Nichols (2011) in the case of our study area while
considering the effects of including uncertainty in just LiDAR and transformation compared to
considering uncertainty in LiDAR, transformation and SLR estimates. Kanaha Beach Park is
categorized as bare land, and Maui planners who favor soft approaches of coastal protection
such as replenishment may be relieved that bare land is overstated by only 2.7 % of all
vulnerable land covers at the high probability threshold, thus allowing for more conservative
adaptation decisions if uncertainty in SLR estimates is not considered. Maui urban planners are

Fig. 4 Difference (Δ) in land cover between considering uncertainty in 1) LiDAR, transformation and SLR
estimates, and 2) LiDAR and transformation for each of the high and low probability thresholds. Where
excluding uncertainty in SLR estimates consistently overestimates land cover at the high probability threshold,
and consistently underestimates land cover at the low probability threshold
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likely most concerned with impervious surface and open space developed land covers that
together are overestimated by 6.8 % of all vulnerable land covers at the high probability
threshold, and underestimated by 19.7 % of all vulnerable land covers at the low probability
threshold. Thus, uncertainty in SLR estimates should be included in the vulnerability
assessments so that effective decisions of hard approaches such as drainage systems, and as
in the case of Kahului Harbor, accommodation and retreat approaches such as land-use
planning and hazard delineation are implemented. The majority of inundated land cover
categories are the four types that make up Kanaha Pond State Wildlife Sanctuary (see
section 2.1), which is a natural reclamation of water areas. These land covers altogether are
underestimated by 52 % of all vulnerable land covers at the low probability threshold, and
overestimated by 65.6 % of all vulnerable land covers at the high probability threshold. Thus,
uncertainty in SLR estimates should be included so that Managers at the state of Hawai‘i
Department of Natural Resources can more effectively consider migration space for wetland
expansion and accommodation and retreat approaches such as land-use planning. This
suggests that not considering uncertainty in future SLR estimates in addition to LiDAR and
transformation has variable effect on SLR adaptation decisions depending on the land cover
category and how the high and low probability thresholds are defined.

5 Conclusion

The obejectives of this paper are: 1) evaluate the effect of combining uncertainties in LiDAR,
transformation and future SLR estimates on estimating potential land area and land cover loss,
and 3) examine whether including uncertainty in future SLR has implications for adaptation
decisions in Kahului, Maui. We use a Monte Carlo approach to produce probability rasters that
are generalized to a high (cells between 80th and 100th percentile) or low (cells between 20th
and 80th percentile) probability of being inundated. We identify the following:

& The probability of inundation generated by ignoring uncertainty in SLR estimates differs
from that produced by considering uncertainty in SLR estimates with a range of 10 %.

& Assessments that ignore uncertainty in SLR estimates at the high probability threshold will
result in conservative adaptation decisions for Kahului because land area is overestimated
by 2.6 %. Assessments that ignore uncertainty in SLR estimates at the low probability
threshold will result in less reliable adaptation decisions for Kahului because land area is
underestimated by 14.1 %.

& Maui planners will want to consider uncertainty in SLR estimates for open space
developed and impervious surface land covers, especially at Kahului Harbor, so that
reliable approaches such as drainage systems, land-use planning and hazard delineation
are implemented.

& It is essential to consider uncertainty in SLR estimates when calculating vulnerable land covers
within Kanaha Pond State Wildlife Sanctuary, so that managers can take the right course of
action when considering migration space for wetland expansion and land-use planning.

& Not considering uncertainty in future SLR estimates has variable effect on SLR adaptation
decisions depending on the land cover category and how the high and low probability
thresholds are defined.

& SLR vulnerability assessments will benefit if future studies of SLR projections and LiDAR
data providers make available information on the distributions so that researchers can
utilize the appropriate approach to considering uncertainty in SLR vulnerability
assessments.
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It is expected that this paper will help improve mapping SLR vulnerability and assessments.
The authors identify continuing research in areas of incorporating uncertainties into modeling
other physical effects of SLR such as increased storm surges (e.g., Zhang et al. 2013), wave
setup (e.g., Reynolds et al. 2012), and groundwater inundation (e.g., Rotzoll and Fletcher
2012). As we begin to better understand and quantify other uncertainties due to the physical
effects of future SLR, using randomization to represent distributions is a valuable approach to
addressing uncertainty when errors do not follow a Gaussian distribution.
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