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To answer new scientific and ecological questions andmonitor multiple forest changes, a fine scale characteriza-
tion of these ecosystems is needed, and could imply the mapping of specific species, of detailed forest types, and
of functional composition. This characterization can be now provided by the novel Earth Observation tools. This
study aims to contribute to understanding the innovation in forest and ecological research that can be brought in
by advanced remote sensing instruments, and proposes the guild mapping approach as a tool to efficiently mon-
itor the varied tropical forest resources. We evaluated, in tropical Ghanaian forests, the ability of airborne
hyperspectral and simulated multispectral Sentinel-2 data, and derived vegetation indices and textures, to: dis-
tinguish between two different forest types; to discriminate among selected dominant species; and to separate
trees species grouped according to their functional guilds: Pioneer, Non Pioneer Light Demanding, and Shade
Bearer. We then produced guild classification maps for each area using hyperspectral data. Our results showed
thatwith bothhyperspectral and simulated Sentinel-2 data these discrimination tasks can be successfully accom-
plished. Results also stressed the importance of texture features, especially if using the lower spectral and spatial
Sentinel-2 resolution data, and highlighted the important role of the new Sentinel-2 data for ecological monitor-
ing. Classification results showed a statistically significant improvement in overall accuracy using Support Vector
Machine, over Maximum Likelihood approach. We proposed the functional guilds mapping as an innovative
approach to: (i) monitor compositional changes, especially with respect to the effects of global climate change
on forests, and particularly in the tropical biomewhere the occurrence of hundreds of species prevents mapping
activities at species level; (ii) support large-scale forest inventories. The imminent Sentinel-2 data could serve to
open the road for the development of new concepts and methods in forestry and ecological research.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Tropical forests host the largest biodiversity of terrestrial ecosystems
and have a fundamental role in the carbon cycle. Improving the moni-
toring of tropical forests is an important research issue, relevant to the
implementation of climate change related agreements and reporting
duties, to biodiversity conservation, and to the definition of sustainable
schemes for timber extraction. The understanding of ecological mecha-
nisms can also benefit from improved forest monitoring, as in the case
orests and Ecosystem Services
(IAFES-CMCC), via Pacinotti 5,

urin).
of the dynamics of tree species distribution in different ecosystems,
community structures, and spatial distributions of functional traits. For
both applied and scientific purposes, the use of Earth Observation
(EO) is fundamental, allowing extrapolation of local field information,
difficult to collect, to the large extents typical of tropical forests. EO sys-
tems that allow for credible measurement, reporting and verification
are particularly critical for the successful implementation of REDD+
(Reducing Emissions from Deforestation and Forest Degradation)
efforts by the United Nations (UN-REDD, 2013).

The initial remote sensing focus in forest research, a few decades
ago, pointed toward the detection of deforestation and forest land con-
version, and the coarse characterization of different forest types. These
tasks have been successfully accomplished using optical data, which
are now a consolidated tool to monitor, at large and medium scales,
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different forest features (i.e. extent and changes, productivity, health
conditions), thanks to the availability of free, multitemporal, and global
satellite datasets (Hansen et al., 2008a; Hansen et al., 2008b; Margono
et al., 2012; Zhu, Woodcock, & Olofsson, 2012).

In recent years, amore detailed characterization of forests is needed,
to answer new scientific and ecological questions and to monitor
change in many attributes, such as the occurrence of specific species,
and of detailed forest types and their functional composition. This im-
proved forest characterization can be provided by new EO tools, thanks
to the fast technological advancements of this sector.

Satellite open access data presently available (e.g. Landsat, MODIS),
however, do not allow for very fine ecological mapping andmonitoring,
due to limited spatial and spectral resolutions. Despite these limitations,
some studies using multispectral satellite data, often in conjunction
with microwave data, have been able to derive valuable forest informa-
tion such as the characterization of forest classes and/or successional
stages (Foody, Palubinskas, Lucas, Curran, & Honzak, 1996; Vaglio
Laurin et al., 2013); or carbon stock estimation until the saturation
limit (Cutler, Boyd, Foody, & Vetrivel, 2012; Foody, Boyd, & Cutler,
2003a; Gibbs, Brown, Niles, & Foley, 2007; Vicharnakorn, Shrestha,
Nagai, Salam, & Kiratiprayoon, 2014). Additionally, some hyperspectral
systems are available on orbital level such as Hyperion and CHRIS/
PROBA: even if spatially limited, they brought new perspectives for
tropical rain forest studies (Thenkabail, Enclona, Ashton, et al., 2004,
Galvão, Breunig, Santos, & Moura, 2013, Saini et al., 2014; Somers &
Asner, 2013).

With airborne sensors, such as LIDAR and hyperspectral, more de-
tailed forest information can be locally derived, with examples includ-
ing fine scale biomass (Chen, Vaglio Laurin, & Valentini, 2015; Clark,
Roberts, Ewel, & Clark, 2011; Dubayah et al., 2010; Pirotti, Vaglio
Laurin, Vettore, Masiero, & Valentini, 2014; Vaglio Laurin et al., 2014)
and biodiversity estimations (Carlson, Asner, Hughes, Ostertag, &
Martin, 2007; Féret & Asner, 2014; Leutner et al., 2012; Vaglio Laurin
et al., 2014); forest types (Chan & Paelinckx, 2008) and species compo-
sition (Féret & Asner, 2014). However, airborne imagery is character-
ized by high variability, due to different atmospheric and flight
conditions, or sensors used; the generalization of these local findings
is rarely possible and the high data acquisition cost prevents the use of
airborne tools over large regions or for monitoring purposes. Forest re-
search andmonitoring has both the need of open access new high qual-
ity satellite data, suitable for repeated monitoring over large areas, and
of local data collected with innovative sensors, which are under contin-
uous development and allow for technical and scientific advancements.

Forest types have been defined by the Convention of Biological Di-
versity as a group of forest ecosystems of generally similar composition
that can be differentiated from other such groups by their species com-
position, productivity and/or crown closure (https://www.cbd.int/
forest/definitions.shtml, accessed on June 4th 2015). The identification
at fine detail of forest types, successional stages, health conditions and
symptoms of vegetation stress, is critical to provide useful information
for management and conservation planning (Barbati, Corona, &
Marchetti, 2007; Marchetti, Vizzarri, Lasserre, Sallustio, & Tavone,
2014). Vegetation types can be used as a surrogate formodeling the dis-
tribution of species and communities (Foody, 2003b); their mapping is
important as certain types are more susceptible to change due to cli-
mate variability or anthropogenic pressure than others. In the tropical
forest region there is a scarcity of fine scale land cover data and forest
type maps (Vaglio Laurin et al., 2013), and this information is especially
relevant to those areas interested by the REDD+ (Reducing Emissions
from Deforestation and Forest Degradation) program incentives.
Hyperspectral airborne data already proved very useful for detailed for-
est type characterization. Asner et al. (2011); Kumar, Schmidt, Dury,
and Skidmore (2001); Thenkabail, Lyon, and Huete (2011) and Ustin,
Roberts, Gamon, Asner, and Green (2004) provided detailed insights
on principles and ecological applications of image spectroscopy, which
is based on the fine spectral differences captured in hyperspectral data
and allow the very fine characterization of forests. Almost two decades
agoMartin, Newman, Aber, and Congalton (1998) discriminated among
temperate forest types in US using Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) data, and since then many advancements have
beenmade through the detection of vegetation biochemical differences
(see Kalacska & Sanchez-Azofeifa, 2008; and Kokaly, Asner, Ollinger,
Martin, & Wessman, 2009). Even if image spectroscopy technique is
not new, its application in tropical forests for forest type and species
mapping is limited by high airborne survey costs, and is more challeng-
ing than in other ecosystems due to the high number of spectrally sim-
ilar species, an irregular phenological behavior, and a complex canopy
structure with complicated scattering mechanisms (Baldeck et al.,
2014; Clark, Roberts, & Clark, 2005; Papes et al., 2013; Somers &
Asner, 2014). Species mapping has proven potential for monitoring in-
vasive or commercially valuable species (Asner et al., 2008; Asner G.,
R.E, Ford, Metcalfe, & Liddell, 2009; Somers & Asner, 2013). The ESA
Sentinel-2 (S2) launch represents a very valuable opportunity for the
fine characterization and monitoring of forest types on large scales
(Baillarin et al., 2012), and even if this is not an hyperspectral sensor,
its innovative features can add value. Sentinel-2 offers a multispectral
sensor with 13 bands from 443 to 2190 nm, and a 10 day repeat cycle.
The three S2 red edge bands are especially promising for their ability
to detect fine differences in chlorophyll pigments; higher chlorophyll
content can indicate higher canopy density or complex community
structure, or higher nitrogen content in plant tissue (Alvarez-Añorve,
Quesada, & De la Barrera, 2008). Despite its potential, the usefulness of
S2 for ecological monitoring has been poorly investigated, especially
in the tropical biome; examples of research based on simulated S2
data include themonitoring of vegetation status in grassland and savan-
na in North America (Hill, 2013); the leaf area index estimation in crops
in Europe (Richter, Atzberger, Vuolo,Weihs, & d'Urso, 2009), and in four
different biomes (Lee, Cohen, Kennedy, et al., 2004); the estimation of
leaf chlorophyll content, leaf area index and fractional vegetation
cover in a Spanish region (Verrelst et al., 2012). The texture features ex-
tracted from S2 bands are also expected to be very useful in forest type
classification, as demonstrated by previous studies using textures in
tropical forests for this purpose (Li, Lu, Moran, & Hetrick, 2011; Lu, Li,
Moran, Dutra, & Batistella, 2014). Texture features, which inform
about the spatial relationship between the central pixel of the analysis
window and its neighbors, can enhance the features of interest, reduc-
ing heterogeneity in the same land cover type and preserving features
boundaries. However, the absence of guidelines for the selection of the
features of interest, which are dependent on the imagery and bands
used, the landscape under investigation, the size of themovingwindow
(Lu, Batistella, Moran, & deMiranda, 2008), limit the extensive applica-
tion of these useful techniques.

Tree species discrimination is of great interest to support conserva-
tion andmore sustainable timber extraction practices. Examples of spe-
cies identification with high resolution hyperspectral data are found in
Costa Rica forests, using the HYperspectral Digital Imagery Collection
Experiment (HYDICE) sensor (Clark et al., 2005; Clark & Roberts,
2012); in Hawaiian rainforest, where Asner and Vitousek (2005) identi-
fied invasive species by quantifying water and leaf nitrogen concentra-
tions with airborne spectroscopy; and again in Hawaiian forest where
Féret and Asner (2012) used hyperspectral imagery and LiDAR (Light
Detection and Ranging) to map individuals of nine tree species, and
Somers and Asner (2012) used time series analysis to detect native
and invasive species. To perform species mapping very high spatial res-
olution sensors are needed, to detect single crowns. In tropical areas the
presence of very large crowns helps, but only the very high resolution
future hyperspectral satellite missions will support species mapping at
reasonable costs over large areas.

Among the different vegetation characteristics studied using remote
sensing, one which received much attention is plant functional type,
which describes groups of plants with common response to certain en-
vironmental influences (Lavorel, McIntyre, Landsberg, & Forbes, 1997;

https://www.cbd.int/forest/definitions.shtml
https://www.cbd.int/forest/definitions.shtml


165G. Vaglio Laurin et al. / Remote Sensing of Environment 176 (2016) 163–176
Lavorel & Garnier, 2002). Functional types are employed in global vege-
tation and climate change models (Smith, Shugart, &Woodward, 1997;
Woodward&Cramer, 1996) becausemodel parameterization is difficult
for single species; in this context the Diversitas initiative of the Interna-
tional Geosphere–Biosphere Programme is currently working to refine
plant functional classification for the improvement of Earth System
models (Canadell, Pataki, & Pitelka, 2007). Evidence of climate change
impacts on tropical forests is increasing, and these impacts can produce
immediate changes or subtle modifications. Mortality of large trees in-
duced by drought has been documented in Amazon and Borneo forests
(Kumagai & Porporato, 2012; Phillips et al., 2010); an increase in above
ground biomass and increase in forest dynamics in response to global
warming effects have been observed in South American long termmon-
itoring plots (Baker, Swaine, & Burslem, 2003; Lewis et al., 2004).While
the effects of extreme events –such as drought and fire induced wide-
spread tree mortality- can be detected by optical data (Zhang et al.,
2013), the monitoring of forest modifications induced by long term
moderate changes in climate variables, such as a change in functional
composition, requires the use of different data and approaches. This is
an important research area as the magnitude of functional changes
cannot be inferred using structural variables, and climate variability
and anthropogenic disturbance are expected to increase in coming
years, especially in the West African region (Christensen, Hewitson,
Busuioc, et al., 2007; Sheffield &Wood, 2008). Some research has al-
ready illustrated climate-related functional changes. For instance, in
the Amazon region drought disturbance is a major determinant of
forest composition, with differential responses observed in relation
to ecological groups and drought types (Karfakis & Andrade, 2013).
In Panama, Condit, S.P, and R.B (1996) analyzed forest compositional
changes after a sequence of dry years and seasons, finding that a de-
cline in the moisture-demanding guild indicates that a change in
composition precedes a structural change. Anthropogenic activities,
such as logging, can also modify the guild composition of forests in
favor of fast growing pioneer species, as observed in an Indonesian
Dipterocarp forest (Yoneda, Nishimura, Fujii, & MUKHTAR, 2009).
Assessing forest guilds composition is important also to better un-
derstand forest growth dynamics: in Ghana, these dynamics were in-
fluenced both by functional composition and resource availability
(Baker et al., 2003).

Different kinds of functional groups have been proposed (Reich
et al., 2003); Clark and Clark (1999) suggested that in tropical forests
the number of groups is potentially very high. One approach of func-
tional grouping relates plant response to illumination condition, such
as shade tolerance (Mulkey, Wright, & Smith, 1993). According to this
approach Hawthorne (1995) classified West African forest tree species
in Pioneer (PION), Non Pioneer Light Demanding (NPLD), and Shade-
Bearer (SB) guilds. The guild concept has been used for many years
(Simberloff & Dayan, 1991; Terborgh & Robinson, 1986), but many
questions related to the structure of ecological communities are still de-
bated, including the processes that promote different dominance of
patches of particular guilds. In this respect, the study of disturbances
using remote sensing and in situ data is promising (McDowell et al.,
2015), as it can clarify the processes that contribute to shape the varied
patterns of dominance by different guilds. Studying forests using the
guild approach and developing guild mapping initiatives can support
community ecology science as well as ecosystem management. The
guild approach has already proved effective in tropical areas to assess
the effects of disturbance, such as selective logging (Hawthorne, Sheil,
Agyeman, Juam, & Marshall, 2012), or forest fragmentation (Hill &
Curran, 2005). In Central Amazonia, remote sensing and in situ data
were useful to understand the complex large-scale structure of an old-
growth forest, which resulted driven by disturbance and recovery cycles
(Chambers et al., 2013).

In Ghana, Sheil, Salim, Chave, Vanclay, andHawthorne (2006) found
a trade-off between mature tree size and their shade tolerance or guild,
influenced by disturbance, while Fauset, Baker, Lewis, et al. (2012)
observed a shift in guilds composition, they proposed, as a response
to long term drought. Forest monitoring can also directly benefit
from a guild approach, as the proportion of trees belonging to differ-
ent guilds provides an indication of successional forest conditions.
For Ghana this has been illustrated in previous research, through
the development of a Pioneer Index (Hawthorne, 1996; Hawthorne
& Abu-Juam, 1995). Similarly, guilds have been helpful in other in-
vestigations such as the usefulness of different types of secondary
vegetation to local communities (Marshall & Hawthorne, 2012); for
framing the physiological responses of different tree species to
light (Agyeman, Swaine, & Thompson, 1999); for understanding
tree allometric relationships (Sheil et al., 2006); and to explore
tree species diversity (Bongers, Poorter, Hawthorne, & Sheil, 2009).
However, the number of studies addressing guilds composition to
monitor and understand forest functional changes is still limited, and
additional research and monitoring efforts are needed especially
under the present climate change threat.

The present research has three main objectives. The first is to evalu-
ate the ability of airborne hyperspectral data and simulated S2 data, and
derived features (vegetation indices and textures) to distinguish be-
tween two slightly different forest types in Ghana: wet evergreen forest
in Ankasa Conservation Area, and moist semi-deciduous forest in Bia
Conservation Area. Our hypothesis is that the two areas are distinguish-
able with both hyperspectral and S2 data, thanks to the different forest
structures and phenological characteristics, even though a significant
number of trees of the same species are found in both forests. The sec-
ond objective is to evaluate the ability of hyperspectral and S2 datasets
to distinguish among selected dominant tree species, belonging to dif-
ferent guilds, in each area.We hypothesize that this task can bewell ac-
complished using hyperspectral data and that less accurate results can
be obtained using simulated S2 data, due to its more limited spatial
and spectral resolutions. The third objective is to test the hyperspectral
and S2 datasets for the discrimination of functional guilds, identified as
Non Pioneer Light Demanding (NPLD), Pioneer (PION), and Shade-
Bearer (SB), according to Hawthorne (1995). We expect that the spec-
tral variation among different guilds is larger than that among species
belonging to the same guild, and thus that the trees in our areas can
be discriminated, classified and mapped according to the guild they be-
long to. For classification, performed using hyperspectral data, we
adopted and compared Maximum Likelihood and Support Vector Ma-
chine approaches. This third objective is closely connected to the aim
of improving forest monitoring and assessment. Knowledge of abun-
dance and cover of forest guilds is useful for biodiversity assessment,
particularly in tropical forest. Coupling forest inventory and thematic
maps, obtained using remote sensing data, can support this effort in
twomainways. The first one is the use of thematicmaps to improve for-
est inventory estimates. It is well known that, given a sampling effort
(the number of sample survey units), application of stratified sampling
techniques to environmental resources leads to more precise popu-
lation estimates than the non-stratified ones. In the case of stratified
sampling, like multi-phase forest inventories, the area is divided into
relatively homogeneous subareas (called strata) and each stratum is
sampled separately. The single stratum can be obtained directly from
thematic maps, like e.g. the guilds map. The second option comes
from estimating the relationship between remotely sensed data
and forest attribute selected from field inventory, in order (i) to map
this forest attribute over the entire region of interest, or (ii) improve
the precision of inventory estimates: for methodological details, see
Corona (2010).

Overall, these objectives are useful to understand to which extent
advanced airborne technology is capable of providing very fine resolu-
tion information on forests, for example for tracking subtle forest
changes in relationship to climate variability, and which part of this in-
formation is lost or preservedwhen using spatially and spectrally coars-
er data such as the new satellite S2, which on the other hand allows for
broader area coverage and absence of data acquisition costs.
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2. Materials and methods

2.1. Study areas

The Ankasa Conservation Area (Fig. 1) is located in south-western of
Ghana, covering an area of 509 km2; it is composed by the Nini-Suhien
National Park and the Ankasa Resource Reserve. It became a wildlife
protected area in 1976. The climate is characterized by a bi-modal rain-
fall pattern, from April to July and from September to November; an av-
erage annual rainfall between 2000 and 2200 mm; a mean monthly
temperature typical of tropical lowland forest and ranging from 24 °C
to 28 °C; and a relative high humidity throughout the year, from about
90% at night to 75% in early afternoon. The vegetation of Ankasa is char-
acterized as wet evergreen forest, with high floristic and structural
diversity and restricted to the highest rainfall zone in Ghana (Hall &
Swaine, 1981). Species typical of this forest zone include: Cynometra
ananta, Lophira alata, Heritiera utilis, and Protomegabaria stapfiana.
Two species that are very common in the semi-deciduous forests of cen-
tral Ghana, Celtis mildbraedii and Triplochiton scleroxylon, are absent
from Ankasa. The landscape is characterized by the presence of low
hills with an average elevation of 90m a.s.l. and swampy areas. The geo-
logical substrate of the reserve is mainly granite of the Cape Coast com-
plex. Parts of the southern portions of this forestwere selectively logged
from about the 1960s to 1974, but logging intensitywas low due a small
proportion of valuable timber species, and most of the forest was un-
touched (Hawthorne, 1989).

The Bia Conservation Area (Fig. 1) is located in the Juabeso-Bia Dis-
trict in southwest Ghana close to the border with Ivory Coast, covering
approximately 306 km2. It comprises the Bia National Park (northern
part) and Bia Resource Reserve (southern part) and covers the transi-
tion zone between two of Ghana's forest types, moist evergreen forest
in the south and moist semi-deciduous forests in the north. It is charac-
terized by a bimodal rainfall peaks, betweenMay and June and between
September and October; a mean annual precipitation ranges from 1500
to 1800 mm; and a mean monthly temperature ranges between 24 °C
and 28 °C (Hall & Swaine, 1981). Some of the most common species
Fig. 1. Location of Ankasa (ANP) and
are: Baphia nitida, Celtis mildbraedii, Pycnanthus angolensis, Triplochiton
scleroxylon, and Terminalia superba (Hawthorne, 1995). The topography
of the study area is generally hilly with elevations ranging between
168 m and 238 m a.s.l. The geological formation corresponds to the
Lower Birrimian. In Bia National park no systematic logging activity oc-
curred in thepast decades,while selective loggingwas relatively intense
in southern Bia Resource Reserve until the beginning of the nineties
(Hawthorne et al., 2012).

2.2. Remote sensing data and photointerpretation

Airborne hyperspectral data were collected in two consecutive days
on March 2012, in strips covering parts of the study areas, with an AISA
Eagle sensor with FOV equal to 39.7 urad, a signal-to-noise ratio of
1250:1, set to record 244 bands with 2.3 nm spectral resolution in the
400–1000 nm range, and resulting in a spatial resolution of 1m after ra-
diometric correction and orthorectification (Fig. 2). The Fast Line-of-
Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm
(Felde et al., 2003) was used to perform the atmospheric correction of
the strips. Fifty-two noisy bands out of the 450–900 nm range and
four bands between 759 and 766 nm range were removed, obtaining
186 bands. We used Minimum Noise Fraction (Green, Berman,
Switzer, & Craig, 1988) to remove or reduce the noise in the spectral
curve of each pixel; for each strip we retained only the MNF compo-
nents (9 to 15) inwhich the crown shapeswere still visible and not con-
fused by noise, excluding the other noisy ones; we finally converted the
MNF bands to the original scale so that we can calculate the spectral in-
dices, as in other studies (Galvão, Formaggio, & Tisot, 2005; Shafri,
Hamdan, & Izzuddin Anuar, 2012). For the present analysis we per-
formed a systematic sampling, selecting one band every 15 to obtain
13 bands, to ensure that the bands were evenly distributed across the
450 to 900 nm spectral range. Furthermore, using bands from the full
dataset we computed the following vegetation indices: Normalized Dif-
ference Vegetation (NDVI) and Simple Ratio (SRI) (Sellers, 1985), Atmo-
spherically Resistant Vegetation (ARVI) (Kaufman & Tanré, 1996), Red
Edge Normalized Difference Vegetation (ReNDVI) (Sims & Gamon,
Bia (BNP) Conservation Areas.



Fig. 2.Hyperspectral data collected over Ankasa and Bia Conservation Areas in a false color
composite of 829 nm (R), 604 (G), and 465 (B) bands. The yellow polygons represent the
delineated crown species.

Fig. 3. Simulated Sentinel-2 data derived fromhyperspectral strips collected inAnkasa and
Bia Conservation areas. False color composite of bands 8 (R), 3 (G), 2 (B).
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2002), Vogelmann Red Edge (VReI) (Vogelmann, Rock, & Moss, 1993),
Photochemical Reflectance (PRI) (Gamon, Penuelas, & Field, 1992),
RedGreenRatio (GRI) (Gamon& Surfus, 1999), Carotenoid Reflectance1
and 2 (CRI1, CRI2) (Gitelson, Zur, Chivkunova, & Merzlyak, 2002), and
Anthocyanin Reflectance 1 and 2 (ARI1, ARI2) (Gitelson, Merzlyak, &
Chivkunova, 2001). MNF and vegetation indices were computed using
the ENVI software (Excelis); criteria for band assignment are described
in http://www.exelisvis.com/docs/spectralindices.html (accessed on
22nd October 2015). We also computed Gray Levels Co-Occurrence
Matrix (GLCM) Mean, Variance, Homogeneity, Contrast, Dissimilarity,
Entropy, Second Moment and Correlation textural features (Haralick,
1979) using a 5 × 5 window size, consistent with crowns dimension
in our sites (generally comprised between 5 and 15 m radius).

Aerial photographs, used to identify and delineate tree crowns,
were acquired simultaneously with hyperspectral data with a Rollei
H25 camera equipped with a Phase One Digital Back. Images were
georeferenced and orthorectified using a lidar DEM available for the
study areas (Vaglio Laurin et al., 2014) in ENVI software (Excelis);
orthophotos were acquired at 0.1 m spatial resolution.

Using hyperspectral imagery we simulated most of the data which
will be collected by themultispectral sensormounted on the ESA S2 sat-
ellite mission, launched on 23rd June 2015 (Fig. 3). Due to the limited
spectral range of our hyperspectral data (450–900 nm), bands 1 and 9
were not simulated, as well as all the bands (10, 11, 12) included in
the short wave infrared portion of the spectrum. The remaining 8
bands were simulated using the Spectral Response Functions (SRF)
and the approach developed by D'Odorico, Gonsamo, Damm, and
Schaepman (2013). Bands were centered at 490, 560, 665, 705, 740,
783, 842 and 865 nm. All bands' spatial resolution was set to 10 m, re-
sampling with nearest neighbor algorithm the four bands (705, 740,
783 and 865 nm) simulated at 20 m according to SRF; in fact, for test
purposes we chose to set the spatial resolution equal for all the bands,
even thosewhich are planned at 20m in the actual S2 sensor. According

http://www.exelisvis.com/docs/spectralindices.html
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the available bands, we were able to calculate four vegetation indices
(NDVI, SRI, RENDVI, ARI1) and the Gray Levels Co-Occurrence Matrix
(GLCM) textural features (Haralick, 1979) using the smallest possible
(3 × 3) window size.

Using 10 cm resolution orthophotos we delineated the crowns of
species for which identification was unequivocal for their phenological
characteristics in the surveyed period, andwhichwere covered by qual-
ity data (haze and cloud free). This species identification (including 6
species listed in Table 1, and other 15 representing the different guilds)
was possible thanks to the 10 cm resolution of the orthophotos, which
allowed the identification of species-specific traits related to crowns
structure, foliar texture and color, and in some cases, flowers; when
the species identification was uncertain, that species was discarded
from the analysis. Identification was guided by ground truth, plot data.
Results where then reported to the 1 m resolution co-registered
hyperspectral images (Fig. 2), overlaying the interpreted tree species
with hyperspectral images, and consequently to the simulated S2
dataset. To refine the results of the photointerpretation, we used field
data provided by the ERC Africa GHG FP7 EU funded project, which
collected data in different surveys carried out in 2012–2013. Overall,
during the surveys, 4.7 ha (899 trees) were surveyed in Ankasa and
3.89 ha (575 trees) in Bia, collecting information on species, height
and diameter at breast height (DBH) for trees N20 cmDBH.We also col-
lected field information on lianas presence: this helped during the pho-
tointerpretation to exclude crowns on which lianas were densely
superimposed, which however were few, spread between the more
globular and discrete tree crowns, and characterized by a different tex-
ture due to their different architecture. We did not have accurate geo-
graphical coordinates for single trees, but we checked if the species
with larger crowns identified in the orthophotos were also recorded
(with large DBHs) in the field records. The use of photointerpretation
with ground truth data was the only possible solution in complex eco-
systems like the one under analysis, where the number of species and
complexity of vertical canopy structuremake a correct and spatially ex-
tensive mapping of the crowns unfeasible.
2.3. ROI delineation

Two Region of Interest (ROI) of about 26 ha were selected on
hyperspectral imagery inside the reserves, avoiding boundary zones
(exactly of 258,346 1 × 1 m pixels for Ankasa and 259,353 for Bia). In
simulated S2 dataset these two regions corresponded to 2588 and
2593 pixels, respectively. These ‘area ROIs’were used to test the separa-
bility of the two wet evergreen and moist semi-deciduous forest types.

ROIs of crowns of three dominant species per site were identified,
with dominance due to high number of individuals in the upper canopy
layer determined by visual inspection of high resolution imagery
(Table 1); crowns were further screened to retain only the larger ones,
evenly distributed spatially, with species equally represented, thus
obtaining a similar number of pixels for each species. These ‘species
ROIs’were used to test the separability among canopy dominant species
inside the Ankasa and Bia sites.

ROIs of crowns for 15 species, almost equally represented and
belonging to PION, SB, and NPLD guilds, were also delineated to obtain
in each area a similar number of pixels per guild type (Table 3). The
Table 1
Selected dominant species for Ankasa and Bia areas, pixels in hyperspectral and simulated Senti
ing; PION = Pioneer; SB = Shade-Bearer.

Ankasa conservation area

Species name Hyper pixels S2 pixels Guild

Cynometra ananta 4607 57 SB
Heritiera utilis 4373 59 NPLD
Protomegabaria stapfiana 4452 45 NPLD
PION species included: Alstonia boonei, Elaeis guineensis, Lophira alata,
Myrianthus arboreus, Terminalia superba, Triplochiton scleroxylon; the
SB: Berlinia spp., Celtis mildbraedii, Cola gigantea, Cynometra ananta;
and the NPLD: Albizia spp., Heritiera utilis, Piptadeniastrum africanum,
Protomegabaria stapfiana, Pycnanthus angolensis, and Uapaca guineensis.
These ‘guilds ROIs’ were used as a preliminary test for the separability at
guild level per area, and then to produce the guilds maps by means of the
twodifferent classification approaches. Ghana hasmore than 300 large for-
est tree species (Hawthorne&Gyakari, 2006), so this is afirst examination
of this approach. For classification purposes, a ‘Shadow’ class of similar
size was also delineated in each area. All the classes (NPLD, PION, and
SB) were randomly partitioned into 70% training and 30% validation sets.

2.4. Classification procedure

We adopted and compared the results of two classifications. Maxi-
mum Likelihood (ML) approach (Richards & Jia, 1999) was selected
due to its broaddiffusion. Support vectormachine (SVM) is a supervised
non-parametric statistical learning technique, which is known for the
ability to generalize well even with limited ground truth, and often
used to improve the classification of remotely sensed imagery, including
airborne hyperspectral (Féret & Asner, 2012; Mountrakis, Im, & Ogole,
2011; Paneque-Gálvez et al., 2013). With ML technique, training multi-
dimensional data are used to find the so-called optimal separation hy-
perplane, i.e. the hyperplane that separates the dataset into a discrete
predefined number of classes in a way consistent with training sample,
maximizing the distances between different classes in order to mini-
mize misclassifications (Burges, 1998). To perform ML we used ENVI
4.5 (Exelis). For SVM we adopted the R package e1071 (R Core Team,
2013); the optimal gamma and cost parameters were identified using
tune.svm function. For both Ankasa and Bia gamma was equal to 0.1
and cost equal to 10. ML and SVM results for each area were compared
using the Z test (Congalton & Green, 2008); test values N1.96 (at 95%
confidence level) indicate that the confusion matrices under compari-
son are significantly different.

2.5. Data analysis steps

The first step was to analyze the separability of Ankasa and Bia for-
ests. We used the Jeffrei–Matusita (J-M) separability measurement
(Richards & Jia, 1999) and the ‘area ROIs’ to test the ability of
hyperspectral, simulated S2 data, and the vegetation indices derived
from these datasets, to distinguish the two different forest types. The
value of the J-M measurement ranges from 0 to 2.0 and indicates how
well the selected ROI pairs are statistically separated; values above 1.8
indicate that the ROI pairs have good separability (Richards & Jia, 1999).

As second step, we repeated the separability analysis at crown level
for the 3 dominant species in each area, using ‘species ROIs’, represented
by a relevant number of pixels (N40 in simulated S2 data) and belonging
to different guilds, using as input the same hyperspectral, simulated S2,
and derived features. This test highlighted the separability of different
species (and their guilds) inside each area.

We finally used the ‘guild ROIs’ to investigate the separability of dif-
ferent guilds over the entire airstrips, by means of hyperspectral, simu-
lated S2 and derived features.
nel-2 data, and guild type. S2= simulated Sentinel-2. NPLD=Non Pioneer Light Demand-

Bia conservation area

Species name Hyper pixels S2 pixels Guild

Pycnanthus angolensis 4670 55 NPLD
Terminalia superba 4578 52 PION
Triplochiton scleroxylon 4739 56 PION
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When the separability threshold (set to 1.8) was not reached with
bands or vegetation indices as inputs, we added texture features as in-
puts. To avoid using a very large number of textures we adopted a sim-
ple and semi-automatic approach for selecting the most relevant ones
for each separability task (forest type, species, and guilds distinction).
We first stacked (joined the features in a stack, ie. a single file for pro-
cessing purposes) all the textures of a given type (e.g. mean, variance
etc.) and ranked their J-M scores (by type stacking); layer stacking and
J-M analysis were performed with ENVI (Excelis) software. We then
stacked the textures according to the band they derived from, and
again ranked the J-M scores obtained (by band stacking). We then
added to the original bands or vegetation indices (if the latter per-
formed better than bands) a number of progressively higher texture
features, until the 1.8 set threshold was reached. The added textures
were those having the higher rank in by type stacking, generated from
bands (maximum four) that obtained better scores in by band stacking.
Finally, we produced tree guilds maps, one per area, from the
hyperspectral imagery.
3. Results

3.1. Differentiation of forest types based on spectral properties, vegetation
indices, and texture

We tested the J-M separability of the two Ankasa and Bia areas using
the 13 systematically sampled hyperspectral bands and derived vegeta-
tion indices. J-M with 13 bands as inputs resulted N1.99, and the same
result was obtained using all the computed vegetation indices. To iden-
tify the most informative spectral regions we tested J-M measurement
separately per each index; most of them obtained scores well above
the 1.8 separability threshold, with the exception of three indices with
scores between 0.63 and 1.52 (ARI1, CRI1, and SRI). We repeated the
separability using only the highest scoring vegetation indices, REPI
and SGI indices, obtaining a J-M score N 1.99. Overall, these results indi-
cate that the two areas can be easily discriminated using both original
hyperspectral data and the derived indices. The most informative spec-
tral regions were the red edge and the green.

The J-M scores for the eight S2 simulated bands were equal to 0.70;
the score increased to 0.98 when the four vegetation indices were used
as input. To increase separability we added texture features. The semi-
automatic procedure of texture selection resulted in the selection of var-
iance, contrast, and dissimilarity from bands 1, 2, and 3. The J-M score
obtained using these textures and the 4 vegetation indices as inputs
was equal to 1.89. These results indicate that the two areas can be dis-
tinguished by simulated S2 data, using derived features (vegetation in-
dices and textures), while the task cannot be accomplished using the S2
bands or vegetation indices alone.
Table 2
J-M scores for pairs of selected dominant species per area, belonging to various guilds (species h
Sentinel-2. NPLD = Non Pioneer Light Demanding; PION= Pioneer; SB = Shade-Bearer.

Ankasa conservation area

Hyper bands Hyper vegetation indices H

Cynometra (SB)–Heritiera (NPLD) 1.49 1.46 1
Cynometra (SB)–Protomegabaria (NPLD) 1.37 1.45 1
Heritiera (NPLD)–Protomegabaria (NPLD) 1.29 1.14 1

Bia conservation area

Hyper
bands

Hyper vegetation
indices

Hyper band

Pycnanthus (PION)–Terminalia (NPLD) 1.67 1.75 1.84
Pycnanthus (PION)–Triplochiton (NPLD) 1.61 1.79 1.87
Terminalia (NPLD)–Triplochiton (NPLD) 1.90 1.98 1.99
3.2. Differentiation of dominant species based on spectral properties,
vegetation indices, and texture

The results presented in this section are related to the differentiation
of dominant species. Three species were considered in each area:
Table 1 illustrates the results obtained from the delineation of crowns,
with number of crowns for each species comprised between 12 and
38; the separability of the dominant species in Ankasa and Bia areas ac-
cording to different inputs is reported in Table 2.

Hyperspectral sampled bands and derived vegetation indices were
not able to perform the species distinction in Ankasa. The texture selec-
tion procedure previously described resulted in the addition, to the 13
hyperspectral bands, ofmean, variance, secondmoment and correlation
textures derived from bands 1 (465.05 nm), 5 (504.42 nm), and 6
(639.99 nm). Results, illustrated in Table 2, indicate that in Ankasa the
discriminationbetween species is only possiblewith the addition of tex-
ture variables. Texture features were particularly useful in the species
level analysis, as some of them were able to enhance crowns edges in
the imagery (Fig. 4).In Bia, hyperspectral bands or indices were only
able to distinguish the two NPLD species pair, but vegetation indices
produced J-M scores close to separability threshold for all three pairs
of species compared. The procedure of selection of texture features
resulted in the addition, to vegetation indices, of mean texture from
bands 1 (465.05 nm), 8 (711.17 nm), and 9 (746.93 nm). In contrast
to what was found for Ankasa, with the addition of texture, all three
pairs had J-M indices N1.8, indicating good separability, and in general,
the Bia pairs were more distinguishable than the Ankasa ones.

For simulated S2 data (Table 2), neither the bands nor the vegetation
indices were effective in discriminating species in any of the areas. In
Ankasa separability was reached when using in addition to bands, sec-
ondmoment, variance, and correlation frombands 1, 2, and 5, according
to the results of the texture features selection procedure. In Bia the tex-
ture selection resulted in the selection of correlation calculated from
bands 2, 3, and 4; with these inputs separability was reached.

Even if simulated S2 results should be interpreted with caution for
the limited number of pixels used in the analysis (Table 3), they support
what was found with hyperspectral data, namely that the pairs distinc-
tion in Bia was easier in comparison to the one in Ankasa, and that the
pair composed by two NPLD species showed different behaviors in
each area.

3.3. Guilds differentiation and classification results

The results presented in this section are related to the differentiation
of guilds, and the following classification exercise. Table 3 provides in-
formation on the number of pixels belonging to each guild, in each
area, for hyperspectral and simulated S2 data, while the separability of
guild in each area according to different inputs is reported in Table 4.
ere are indicated only by genus name, for complete name refer to Table 1). S2= simulated

yper bands + textures S2 bands S2 vegetation indices S2 bands + textures

.97 1.02 0.83 1.80

.81 1.01 0.36 1.97

.80 0.99 0.72 1.98

s + textures Sentinel-2
bands

Sentinel-2
vegetation indices

Sentinel-2 bands + textures

1.22 0.57 1.93
1.29 0.57 1.91
1.55 1.29 1.95



Fig. 4. Ankasa hyperspectral data. On the left hand the hyperspectral strip over Ankasa
Conservation Area: false color composite of 829 nm (R), 604 (G), and 465 (B) bands. On
the upper right hand a zoom of the left image for the white. Delineated region; on the
lower right hand the same regions is shown using a false color composite of variance
textures from bands 1 (R), 5 (G), and 6 (B) which highlight crowns edges.
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In Ankasa, the hyperspectral sampled bands were not able to sepa-
rate guild pairs; vegetation indices were successful for both SB–PION
and PION–NPLD pairs, with SB–NPLD resulting very close to the 1.8 se-
lected threshold. To reach full guilds discrimination the combination of
spectral bands with a subset of the vegetation indices (SGI, PRI, EVI,
NDVI, RGRI)was needed. In Bia, nor hyperspectral bands neither indices
were successfulwhile, as in Ankasa, the combination of the two setswas
able to separate all the guilds pairs. In both areas, the pair most difficult
to be distinguished is the SB-NPLD one, and SB–PION is the easiest one.
This is consistent with the amount of spectral difference among guilds,
Table 3
Number of pixels from several trees species belonging to different guilds per area. S2 =
simulated Sentinel-2. NPLD = Non Pioneer Light Demanding; PION = Pioneer; SB =

Shade-Bearer.

Ankasa conservation area Bia conservation area

Guild # of
species

Hyperpixels S2
pixels

Guild # of
species

Hyperpixels S2
pixels

NPLD 6 2576 30 NPLD 3 2354 26
PION 2 2487 31 PION 4 2369 28
SB 5 2632 29 SB 3 2346 27
which is expected to be larger between SB and PION, with NPLD being
intermediate between SB and PION. The larger SB–PION difference is
in accordancewith the different leaves pigments and structure associat-
ed to the two opposite illumination conditions (shade and sunlight
exposure).

For simulated S2 data, the bands and the vegetation indices showed
low separability values in both areas. For S2, we did not tested the com-
bination of bands and indices as the latter are computed using the eight
simulated bands (while for hyperspectral data the indices are computed
using other bands than those thirteen sampled). Therefore we added
textural features to the S2 bands: for Ankasa the selected oneswere cor-
relation frombands 1, 4, and6; for Bia correlation frombands 1, 2, and 5.
The number of pixels used in these tests was low (Table 1), but most of
the results confirmedwhatwas found using hyperspectral data with re-
spect to easiness of the separability task for the different type of guilds.

3.4. Guild maps

We produced guilds maps for the entire hyperspectral airborne
strips of Ankasa and Bia areas, using as inputs the combination that pro-
vided better separability (bands and vegetation indices), and as training
and validation the ‘guilds ROIs’. Overall accuracy values and K coeffi-
cients for the confusion matrices obtained from ML classification are
presented in Table 5. Results from SVM are presented in Table 6, and
the corresponding maps in Fig. 5. The Z test values were significant for
both Ankasa (2.28) and Bia (4.66) areas, indicating that SVM statistically
significantly improved the classification results compared to the ones
from ML.

We did not attempt the production of guild maps with simulated
Sentinel-2 data due to the limited number of available pixels, but the
separability analysis in Table 4 indicate that guild maps could be possi-
bly obtained also with these data, especially if exploiting the additional
bands, here not simulated, which are planned for the S2 sensor.

4. Discussion

4.1. Forest types

Ourfirst hypothesis, regarding the capability of hyperspectral and S2
data types to distinguish Ankasa and Bia forest types, is supported by
the results of J-M measurements obtained in tests using hyperspectral
bands or simulated S2 vegetation indices with textures. These forest
types discrimination results confirm the known ability of airborne
hyperspectral data to perform detailed forest type mapping, and are in
line with other research in the tropical biome which evidenced the ad-
vantages of using hyperspectral data: for instance, Thenkabail et al.
(2004) used Hyperion imagery to classify nine rainforest types in
Africa; Held, Ticehurst, Lymburner, and Williams (2003) used both
hyperspectral and radar remote sensing to map at high resolution trop-
ical mangrove ecosystems; Kalacska, Bohlman, Sanchez-Azofeifa,
Castro-Esau, and Caelli (2007a); Kalacska, Sanchez-Azofeifa, Rivard,
et al. (2007b) used image spectroscopy to estimate the diversity of dry
forests in Costa Rica. Forest type discrimination using S2 simulated
data was less clear, due to the lower spatial and spectral resolution.
The positive S2 result stresses the impact that the forthcoming mission
could have in ecological mapping and monitoring. We had to add tex-
ture information to simulated bands in order to obtain separability.

For S2, it is expected that the availability of additional bands, espe-
cially those in the short wave infrared region carrying carbon (lignin,
cellulose), nitrogen, and water content information, together with the
plannedmultitemporal acquisitions and thus the ability to capture phe-
nological differences along time, will further improve the ecological
monitoring power of the S2 sensor, opening new roads in forest and
ecology research.

Using high spectral and spatial resolution inputs, we found that
vegetation indices from the red edge and green regions resulted in



Table 4
J-M scores for pairs of guilds per area. S2 = simulated Sentinel-2. NPLD = Non Pioneer Light Demanding; PION= Pioneer; SB = Shade-Bearer.

Ankasa conservation area

Hyper bands Hyper vegetation indices Hyper bands + veget. Indices S2 bands S2 vegetation indices S2 bands + textures

SB–NPLD 1.53 1.77 1.82 1.23 0.77 1.96
PION–NPLD 1.78 1.90 1.92 1.41 0.45 1.97
SB–PION 1.76 1.86 1.91 1.62 1.11 1.97

Bia conservation area

Hyper bands Hyper vegetation indices Hyper bands + veget. indices Sentinel-2 bands Sentinel-2 vegetation indices Sentinel-2 bands + textures

SB–NPLD 1.31 1.53 1.83 1.21 1.87 1.80
PION–NPLD 1.74 1.90 1.99 1.47 1.94 1.97
SB–PION 1.71 1.86 1.98 1.54 1.17 1.97
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better J-M scores, being highly informative: they alone provided forest
type separability. The vegetation indices were calculated from the orig-
inal 186 bands, so their information content was not necessarily a repli-
cation of what was included in the 13 regularly sampled bands. The
green spectral portion is partly linked to photosynthetic pigments, but
also to non-photosynthetic anthocyanins, which absorb light in this re-
gion and are associated with the resistance of plants to environmental
stresses such as drought, low nutrients, and high radiation (Viña &
Gitelson, 2011). In our study, the red edge and green indices were
able to capture the specific differences in canopy density and resistance
to drought: these differences are occurring between wet evergreen and
moist semideciduous forest types, with the latter type in Bia being char-
acterized by less complex and more open forest structure and species
adapted to cope with water scarcity, compared to those in Ankasa.

At the lower resolutions of the simulated S2 bands, texture informa-
tion was necessary for the discrimination of Ankasa and Bia forests, as
well as for the dominant species and guilds distinction tasks. With our
semi-automatic empirical method we were able to identify the most
useful features, which resulted to be different according to the sites
and the different levels of analysis (area, species, and guilds levels).
However, in our S2 tests the correlation, which is a statistical measure
of the linear dependency of gray levels on those of neighboring pixels,
was the most frequently selected feature (four cases out of five) and
alone provided separability in three cases; while with respect to
bands, band 1 and 2 were the most frequently selected, again in four
cases out of five. The texture usefulness is in agreement with several
studies conducted in tropical forests that already stressed the impor-
tance of texture for land cover classification (Li et al., 2011; Lu et al.,
2014; Rakwatin et al., 2012; Vaglio Laurin et al., 2013), or for estimating
forest attributes such as biomass and biodiversity (Culbert et al., 2012;
Cutler et al., 2012).

4.2. Dominant tree species

The discrimination of the selected dominant tree species in Ankasa
and Bia forests required the use of textures with both data types
(Table 3). Hyperspectral data are known to allow the discrimination of
Table 5
Percentages of user and producer accuracies, overall accuracy and K coefficient for Ankasa
and Bia guild maps, using Maximum Likelihood classification algorithm. NPLD = Non Pi-
oneer Light Demanding; PION= Pioneer; SB = Shade-Bearer.

Ankasa conservation area Bia conservation area

Producer
accuracy %

User
accuracy %

Producer
accuracy %

User
accuracy %

SB 84.88 88.10 71.76 88.78
NPLD 88.86 87.71 88.75 60.43
PION 93.88 88.47 87.41 88.89
SHADOW 95.61 98.37 93.12 99.28
Overall accuracy 90.73 84.30
K coefficient 0.97 0.84
selected tropical species, thus the results we obtained using this dataset
confirm our hypothesis, and are in agreement with previous research
based on the full 400–2500 hyperspectral range (Asner & Vitousek,
2005; Clark et al., 2005; Clark & Roberts, 2012; Féret & Asner, 2012).
We based our tests on the limited visible to near infrared range, which
in certain cases is successful too, such as in the study conducted in
Malaysia by Hasmadi, Kamaruzaman, and Hidayah (2010), that
performed tree species mapping with hyperspectral data in a range
(500–850 nm) similar to the one we employed.

Refuting our second hypothesis, the species discrimination
succeeded not only with hyperspectral but also with simulated S2
data. The large crowns (most N10 m radius) characterizing our sites
can have a role in this positive result, reducing the impact of the lower
spatial resolution of this dataset.

We recognize that in tropical forests, especially the more disturbed
ones, lianas, epiphytes and other non-structural elements have the po-
tential to confuse the hyperspectral tree signature, as previous research
shown (Castro-Esau, Sánchez-Azofeifa, & Caelli, 2004; Kalacska et al.,
2007b; Sánchez-Azofeifa & Castro-Esau, 2006; Zhang, Rivard,
Sánchez-Azofeifa, & Castro-Esau, 2006). Additional remote sensing re-
search is needed to properly address this topic and to better understand
the impacts of non-structural forest community elements on research
and monitoring results.

For our preliminary assessment of guild separability using
hyperspectral inputs (Table 2)we emphasize that a few token examples
from the hundreds of species in each guild have been taken, and these
results cannot be seen as representing the full range of species in each
guild accurately. In Ankasa the threshold was barely reached for the
two species belonging to the same guild (NPLD), while species from
different guilds obtainedmuch better J-M scores. In Bia it wasmore dif-
ficult to separate the two NPLD — PION pairs, compared to the species
from the same guild (NPLD); this was also observed using simulated
S2 inputs. We expected to findmore differences in the foliar biochemi-
cal composition of species from different guilds than from the same
guild, as the photochemical and pigments composition is largely deter-
mined by the solar radiation to which the leaves are exposed. However,
during the airborne survey period (dry season) certain species – even if
Table 6
Percentages of users and producers accuracies, overall accuracy and K coefficient for
Ankasa and Bia guildmaps, using SVM classification algorithm. NPLD=Non Pioneer Light
Demanding; PION = Pioneer; SB = Shade-Bearer.

Ankasa conservation area Bia conservation area

Producer
accuracy %

User
accuracy %

Producer
accuracy %

User
Accuracy %

SB 87.72 89.49 79.35 90.06
NPLD 89.25 91.33 87.26 78.72
PION 96.55 90.08 94.92 86.64
SHADOW 96.31 98.24 93.98 98.85
Overall accuracy 92.34 88.53
K coefficient 0.92 0.88



Fig. 5. Guild maps obtained using hypespectral bands and vegetation indices as inputs and Support Vector Machine classification approach.
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belonging to the same guild – showmarked and different phenological
features, such as deciduousness or flowering; these phenological differ-
ences in the twoNPLDBia species, observed also in orthophotos, explain
the high separability. In this view, the collection of multitemporal
acquisitions, planned for the forthcoming Sentinel-2 mission, becomes
especially important for species discrimination.

4.3. Functional composition (guilds)

Results from guilds analysis are preliminary and more species from
each guild will have to be sampled before any guild-wide signals can
be confirmed. If future work confirms or reinforces these differences,
quantifying changes of patterns of dominance of different guilds will
be possible in tropical forests with hyperspectral data, and there is the
potential to perform the same task with forthcoming S2 data (Tables 5
and 6). Patterns of change in guild dominance fromwet to dry forest di-
rectly indicate response of the plant community to past disturbances; in
other words this will provide a metric for stages of secondary growth,
with strong potential for improved forest management (Hawthorne,
1996). The better SVM classification results in comparison to the ones
from ML, obtained for both areas, highlight the importance of machine
learning approaches for performing complex analyses.

The availability of sensors capable of identifying guild is relevant in
ecology, especially in regionswhich are under increasing anthropogenic
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and climate change pressure such as West Africa, with forests at risk
of functional change and shifts in species ranges. Mapping efforts con-
ducted at species level might be not feasible in tropical forests, where
hundreds of species occur: guild dominance mapping may offer a con-
venient alternative for monitoring forest functional changes, even in
areas where plant taxonomy is incomplete or hard to pursue. Presently,
the detection of functional changes by means of hyperspectral data is
practically unfeasible due to high airborne data collection costs, which
limits the area coverage, and the need of specialized expertise for pro-
cessing and interpretation. However, technological innovation already
allowed the development of hyperspectral sensors suited to be accom-
modated in drones (Suomalainen et al., 2014), and examples of commu-
nity forest local monitoring by drones at reduced cost are already in
place and could be replicated (Paneque-Gálvez, McCall, Napoletano,
Wich, & Koh, 2014). Thus, in a near future, these technologies could be
employed to support hyperspectral based monitoring in specific sites
of high ecological value or critically threatened, as well as to calibrate
satellite-based data used in larger scale monitoring efforts.

We separately carried out the guild classification in Ankasa and Bia
because the two hyperspectral strips covering these areas were collect-
ed under different atmospheric and aerial survey conditions. Additional
tests are thus needed to better assess the applicability of the method
over larger extents. It is expected that using a satellite sensor such as
the S2, which collects data over broad regions, will solve the problems
arising when an aerial survey, necessarily fragmented into different
flights, is conducted.

The separability results obtained in guild level tests using S2 data are
preliminary but encouraging (Table 4), allowing some optimism for fu-
ture portability of the procedure proposed here, especially considering
that additional information will be provided by the full band set. It
could be advisable to provide to end users, together with imagery,
preprocessed derived features that can increase data utility (i.e. textures
and vegetation indices), eliminating these processing steps, and
allowing a wider range of users, especially in developing countries in
tropical regions, to benefit from the new EO opportunity. However, S2
will generate big data streams requiring large storage facilities and ex-
pert knowledge, a fact that has to be properly considered when plan-
ning S2 data use.

Furthermore, a guild mapping approach can effectively support
large-scale forest inventories, which were the basis in the last decades
for providing the information necessary to fulfill reporting obligations
under international agreements such as the FAO Global Forest Re-
source Assessment, the Kyoto protocol, the United Nations Conven-
tion on Biological Diversity (Corona, Chirici, McRoberts, Winter, &
Barbati, 2011).

Traditionally, the principal aim of national forest inventories is sup-
plying information on forest timber availability and productivity. De-
spite this, in recent years, more and more attention has been given
to forest biodiversity, as is shown, for example, by the consideration
of deadwood among principal inventory attributes (Rondeux et al.,
2012).

Linking inventory data to ecologically meaningful forest categories
like functional guilds brings substantial advantages for forest assess-
ment, since: (i) it allows improved understanding, interpretation and
communication of data on biodiversity variables by enabling compari-
son of ecologically similar forests; (ii) it enables a more detailed and
richer analysis of indicators in a specific forest habitat (e.g. the relation-
ship between the vertical structure of forest habitat and vertebrate and
invertebrate fauna diversity); and (iii) it provides a suitable basis for es-
timation by ensuring that different forest habitats are adequately repre-
sented in the inventory field plots. Under such operational perspectives,
the portability of the main results by the present study (i.e. those
concerning guild mapping) is proved by both the general representa-
tiveness of selected test areas, the input data availability and the feasi-
bility of the proposed elaboration procedures. Such results emphasize
a significant potential of the Sentinel-2 images for improving large-
scale forest monitoring and assessment efforts in tropical and subtropi-
cal countries, like e.g. those under themechanisms by UN-REED (2013).

Guild dominance mapping should improve the precision of the in-
ventory estimates, either supporting the initial stratification of the in-
ventory field sample (Corona, 2010) or by coupling the mapped data
(used as auxiliary information)with the field sample data (e.g. biomass,
merchantable timber) bymodel-assisted (Corona et al., 2014) ormodel-
based (Meng, Cieszewski, & Madden, 2009) inferential procedures.

In conclusion, this study contributed to anunderstanding of how for-
est and ecological research is likely to be helped by advanced remote
sensing instruments, and proposed the guild mapping approach as a
tool to help efficiently monitor the varied tropical forest resources and
their changes. This approach could be of special use in the near future,
with the availability of S2 multitemporal data over broad regions, and
could support a better understanding of the response of forests to a
changing climate.

Hyperspectral high resolution data are possibly the best tool to con-
duct forest change studies, especially if coupled with sensors able to
provide information on vertical forest structure, such as LiDAR. Several
satellite hyperspectral missions, with open access policy for scientific
use, are under preparation: the EnMAP (Environmental Mapping and
Analysis Program) by the Space Agency of the German Aerospace Cen-
tre, the HyspIRImission of theNational Aeronautics and Space Adminis-
tration of the United States, the continuity of PRISMA (Hyperspectral
Precursor of the Application Mission) led by the Italian Space Agen-
cy, and the HISUI HIS sensor for launch on ALOS-3 satellite by the
Japanese Space Agency. Furthermore, micro- and mini-satellites
will certainly have a role in future hyperspectral EO missions
(Guelman & Ortenberg, 2009). Thus, it is clear that in the coming
decade our way to observe and study forests might be radically
changed by the availability of these new data. However, in the mean-
while ESA Sentinel-2will certainly produce very detailed forest informa-
tion, with additional opportunities coming from its joint use with the
already available Sentinel-1 microwave data, paving the road for the
development of new concepts and methods in forest monitoring and
ecological research.
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