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The estimation of above ground biomass in forests is critical for carbon cycle modeling and climate
change mitigation programs. Small footprint lidar provides accurate biomass estimates, but its applica-
tion in tropical forests has been limited, particularly in Africa. Hyperspectral data record canopy spectral
information that is potentially related to forest biomass. To assess lidar ability to retrieve biomass in an
African forest and the usefulness of including hyperspectral information, we modeled biomass using
small footprint lidar metrics as well as airborne hyperspectral bands and derived vegetation indexes. Par-
tial Least Square Regression (PLSR) was adopted to cope with multiple inputs and multicollinearity
issues; the Variable of Importance in the Projection was calculated to evaluate importance of individual
predictors for biomass. Our findings showed that the integration of hyperspectral bands (R2 = 0.70)
improved the model based on lidar alone (R2 = 0.64), this encouraging result call for additional research
to clarify the possible role of hyperspectral data in tropical regions. Replacing the hyperspectral bands
with vegetation indexes resulted in a smaller improvement (R2 = 0.67). Hyperspectral bands had limited
predictive power (R2 = 0.36) when used alone. This analysis proves the efficiency of using PLSR with
small-footprint lidar and high resolution hyperspectral data in tropical forests for biomass estimation.
Results also suggest that high quality ground truth data is crucial for lidar-based AGB estimates in trop-
ical African forests, especially if airborne lidar is used as an intermediate step of upscaling field-measured
AGB to a larger area.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

Remote sensing of forest aboveground biomass (AGB) has re-
ceived increasing attention during the last decade due to its rele-
vance to global carbon cycle modeling and to international
programs aimed at reducing greenhouse gas emissions in tropical
areas, such as the United Nations Reducing Emissions from Defor-
estation and Forest Degradation (REDD+). In particular, biomass
mapping in tropical biomes is particularly important given the
critical role of tropical forests in the global carbon cycle (Gibbs
et al., 2007). Recent findings show that tropical forests store 21%
more carbon than previously expected (Baccini et al., 2012). While
the biomass of most temperate and boreal zones has been system-
atically inventoried at least once (Houghton et al., 2009), tropical
regions suffer from operational limitations and consequent lack
of data, which is especially marked in Africa (Baccini et al., 2008).

Airborne small-footprint Light Detection and Ranging (lidar) is
considered the most accurate remote sensing technology for map-
ping biomass (Zolkos et al., 2013) and could be useful in filling this
information gap. Discrete return (DRL) or full waveform (FWL)
small-footprint lidar systems are now widespread and operated
around the globe, enabling the collection of up to four returning
energy pulses (as DRL) or all the returning energy (as FWL) from
the forest vertical profile. The laser pulse returns are usually used

http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2014.01.001&domain=pdf
http://dx.doi.org/10.1016/j.isprsjprs.2014.01.001
mailto:gaia.vagliolaurin@cmcc.it
mailto:laurin@disp.uniroma2.it
http://dx.doi.org/10.1016/j.isprsjprs.2014.01.001
http://www.sciencedirect.com/science/journal/09242716
http://www.elsevier.com/locate/isprsjprs


50 G. Vaglio Laurin et al. / ISPRS Journal of Photogrammetry and Remote Sensing 89 (2014) 49–58
to derive forest height metrics, which can then be related to field-
observed AGB, with the latter obtained by means of field measures
and allometric relationships. Due to the high operational costs, li-
dar-derived AGB estimates usually can only be obtained over lim-
ited areas. These local-scale or sub-national accurate estimates are
crucial for REDD+ measuring, reporting, and verification (MRV),
and for country level natural resources management and invento-
ries (Næsset, 2007; Peterson et al., 2007). Local AGB maps are also
the basis for the extension of estimates to larger areas using re-
mote sensing approaches (Asner et al., 2010; De Sy et al., 2012).
However, to date there has been little research into mapping of
biomass in tropical forests using airborne small-footprint lidar.
Zolkos et al. (2013) conducted a comprehensive review and identi-
fied eight studies carried out with this system in tropical forests,
with none in continental Africa.

The uncertainties associated with the current knowledge of the
African ecosystems’ carbon balance are rather high. A review of the
most recent estimates of the net long-term carbon balance of Afri-
can ecosystems, based upon observations, indicated a sink of the
order of 0.3 Pg Cyr�1 with a very high uncertainty and a variable
source; up to now many questions remain open, and it is unclear
whether Africa is a net carbon source or a sink to the atmosphere
(Ciais et al., 2011). Because of highly variable CO2 fluxes and insuf-
ficiently studied ecosystems and ecosystem–human–climate inter-
actions, there is a need for continued and enhanced observations of
carbon stocks, fluxes and atmospheric concentrations to enable
more precise assessments of Africa’s carbon cycle (Justice et al.,
2001), and its sensitivity to natural and anthropogenic pressures
and future climate. Of primary importance is the need for conti-
nent-wide carbon cycle observations that support both bottom-
up and top-down methods of estimating carbon sources and sinks
(Lewis et al., 2009). An African integrated carbon-observing system
is needed, encompassing both: (i) regional inventories and moni-
toring of soil and vegetation carbon stocks by forest and agricul-
tural research stations; (ii) remote sensing-based estimates of
forest biomass C stock distribution, at different scales and using ac-
tive and/or passive sensors combined with field observations. In
view of the above considerations regarding the contributions of
African forests in the global carbon cycle, it is clear how valuable
it is to test biomass mapping by means of various sensors over dif-
ferent African forests.

Hyperspectral sensors, recording the reflectance of a large num-
ber of fine resolution spectral bands from visible to near infrared
(NIR) or shortwave infrared (SWIR) range, are another frontier
technology in remote sensing. Hyperspectral data can capture
information regarding the biochemical composition of the upper
canopy layer and have been used for forest type or species classifi-
cation, estimation of biophysical and biochemical properties and
health status (Asner and Martin, 2008; Koch, 2010; Goodenough
et al., 2006). The ecosystem information recorded by hyperspectral
data may relate to plant functional types – such as whether a spe-
cies is light demanding – which could in turn affect wood density
and thus biomass content (Baker et al., 2004; Chave et al., 2009).
Hyperspectral data have been used to estimate grassland biomass
directly (Cho et al., 2007; Psomas et al., 2011) and leaf canopy bio-
mass (le Maire et al., 2008), while leaf area density, retrieved from
fusion of hyperspectral and radar data, has been used in the esti-
mation of forest AGB (Treuhaft et al., 2003). The few studies that
have attempted to improve biomass estimates in boreal, temperate
and tropical forests by combining hyperspectral imagery with lidar
data have reported only modest or no improvement in model fit
compared to the results from using lidar only (Anderson et al.,
2008; Clark et al., 2011; Latifi et al., 2012; Swatantran et al.,
2011). Despite these research efforts, the number of published
studies on integrating lidar and hyperspectral data for biomass
estimation is rather small. Further research is needed along this
line, especially considering the opportunities from forthcoming
hyperspectral missions, such as the Environmental Mapping and
Analysis Program (EnMap), the PRecursore IperSpettrale of the
application mission (PRISMA), the Medium Resolution Imaging
Spectrometer (MERIS) and the Hyperspectral Infrared Imager
(HyspIRI).

The main objectives of the present study are the following: (i) to
test for the first time small footprint lidar-based AGB retrieval in a
West African tropical moist forest, (ii) to examine whether the use
of very high spatial resolution hyperspectral data in addition to li-
dar can improve the biomass estimates.
2. Materials and methods

2.1. Study area and ground truth data

The study area is within the Gola Rainforest National Park
(GRNP) in Sierra Leone, at the westernmost end of the humid
Upper Guinean Forest Belt, in West Africa (Fig. 1).

The forests of this region are largely lowland moist evergreen
forest with some areas towards lowland dry evergreen and semi-
deciduous forest types (Cole, 1993). Within GRNP Klop et al.
(2008) identified moist evergreen, moist semi-deciduous, freshwa-
ter inland swamp forest, forest regrowth and secondary/disturbed
forest. The GRNP area has been protected through conservation
programs since 1989 but commercial logging, most intensively in
the southern block, was carried out in 1963–1965 and 1975–
1989. Recent land cover mapping (Vaglio Laurin et al., 2013) high-
lighted the importance of conserving this forest from anthropo-
genic pressure in the surrounding areas. The climate is moist
tropical, with annual rainfall around 2500–3000 mm, a dry season
from November to April coincident with leaf-off condition of some
semi-deciduous tree species, and an altitude of 70–410 m.

Field data collection carried out in 2006–2007 in the GRNP
established over 600 plots of 0.125 ha each across the whole park
area, recording species information as well as structural and envi-
ronmental forest parameters. In the plots, all trees with Diameter
at Breast Height (DBH) > 30 cm were recorded, while trees with
DBH included in the 10–30 cm range were measured in a 1/10
smaller subplot. Height measures were derived with a local DBH-
height relationship and the AGB was obtained applying the Chave
et al. (2005) general equation for moist tropical forest including
DBH, height and wood density values. The data collection protocol
and the allometric procedure are fully documented in Lindsell and
Klop (2013). We selected all the plots surveyed by both lidar and
hyperspectral sensors excluding some plots located less than
1 km from the park boundary where land cover changes were most
likely to have occurred in the period between field and aerial data
collection. We also excluded plots affected by cloud shadow in the
hyperspectral data. We retained 70 ground truth plots, with an
AGB range 0–586.9 Mg ha�1 (mean = 172.2 and standard devia-
tion = 111.8 Mg ha�1). These plots contained 136 species with
DBH > 30 cm, and 86 occurring in the upper canopy layer.
2.2. Remote sensing data

The central and parts of the southern blocks of GRPN were sur-
veyed by an airborne campaign in March 2012 over pre-defined
flight lines covering part of the field, using a Pilatus PC-6 Porter air-
craft equipped with lidar and hyperspectral sensors and a digital
camera for aerial photographs.

The lidar sensor ALTM GEMINI (Optech Ltd.), characterized by a
1064 nm laser wavelength and able to record up to 4 range mea-
surements, was operated between 650 and 850 m above ground le-
vel (AGL). The minimum laser density was set to 11 points/m2. The



Fig. 1. The study area located along the border between Sierra Leone and Liberia, and included in the GRNP. The flight lines, realized during an airborne survey, cover part of
the permanent field plots established in the Park.
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lidar dataset was delivered as a point cloud of discrete returns, pre-
processed in Terrascan (Terrasolid) software and adopted the Ap-
planixIN-Fusion™PPP Inertially-Aided Precise Point Positioning
(IAPPP) to cope with the of absence of GPS base stations in the re-
gion. Positional error in x, y, z was always lower than 0.27 m for
any axis. An additional check with points derived from the AUSPOS
network of Geoscience Australia indicated a positional error lower
than 0.2 m. The raw all-returns point cloud was processed using
the Toolbox for Lidar Data Filtering and Forest Studies (TIFFS)
(Chen, 2007) to derive a range of metrics for AGB estimation from
each plot, including: mean height, quadratic mean height, skew-
ness, kurtosis, height bins at 5 m intervals and 10% percentile
heights. TIFFS used the ground returns identified by the data pro-
vider to generate a DTM (Digital Terrain Model) and calculated
the relative height above terrain of each laser return by subtracting
the corresponding DTM elevation from its original Z value. The li-
dar metrics were derived using the relative height of all laser
points.

Hyperspectral data were acquired in 18 strips with an AISA Ea-
gle sensor, with FOV equal to 39.7�, set to record 244 bands with
Table 1
Description of remote sensing statistics used in biomass regression analyses.

Input Descriptio

Lidar height metrics – Mean o
– Standar
– Quadra
– Skewne
– Kurtosi
– Proport
– 10% Per

Hyperspectral bands – 186 ban

Vegetation indices – Normal
– Simple
– Atmosp
– Red edg
– Vogelm
– Photoch
– Red gre
– Anthoc
2.3 nm spectral resolution in the 400–970 nm range. The final spa-
tial resolution was at 1 m after radiometric correction and ortho-
rectification based on a lidar-derived Digital Elevation Model
(DEM). A visual inspection of data from 30 randomly selected plots
revealed a spatial mismatching between hyperspectral and lidar
data within a range of 1–4 m.

Atmospheric correction of the hyperspectral images was per-
formed using the Fast Line-of-Sight Atmospheric Analysis of Spec-
tral Hypercubes (FLAASH) algorithm, which is based on a
MODTRAN4 approach for path scattered radiance, absorption,
and adjacency effects (Felde et al., 2003). Due to noise, all the
bands outside the 450–900 nm range and four bands in the 759–
766 nm range were removed, reducing the total number of bands
to 186. Minimum Noise Fraction (MNF) transformation (Green
et al., 1988) was used to further reduce noise in the dataset. For
each image strip, 9–15 MNF components were selected by visual
screening and used to compute the inverse MNF to transform back
the bands in the original data space. Different strips have different
noise levels and types: generally the useful information is included
in the first 15 components, but this is a rule of thumb. Visual
n

f all plot returns
d deviation
tic mean
ss
s
ion of points at height bins of 5 m intervals
centiles from 10% to 100%

ds in the 450–900 nm interval, atmospherically corrected and noise minimized

ized difference vegetation index (Sellers, 1985)
ratio index (Sellers, 1985)
herically resistant vegetation index (Kaufman and Tanre, 1996)
e normalized difference vegetation index (Sims and Gamon, 2002)
ann red edge index (Vogelmann et al., 1993)
emical reflectance index (Gamon et al., 1992)
en ratio (Gamon and Surfus, 1999)
yanin reflectance index 2 (Gitelson et al., 2001)
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screening allowed to identify the correct number of components to
be used for analysis (Williams and Hunt, 2002; Underwood et al.,
2003; Goodwin et al., 2005).

Eight vegetation indices (VIs) were calculated from the inverted
MNF bands (Table 1): Normalized Difference Vegetation (NDVI)
and Simple Ratio (SRI) (Sellers, 1985), Atmospherically Resistant
Vegetation (ARVI) (Kaufman and Tanre, 1996), Red Edge Normal-
ized Difference Vegetation (ReNDVI) (Sims and Gamon, 2002),
Vogelmann Red Edge (VReI) (Vogelmann et al., 1993), Photochem-
ical Reflectance (PRI) (Gamon et al., 1992), Red Green Ratio (GRI)
(Gamon and Surfus, 1999), and Anthocyanin Reflectance 2 (AR2I)
(Gitelson et al., 2001). These indices were chosen for representing
information from different portions of the spectra of vegetation
greenness, light use efficiency and leaf pigments and for being rel-
atively insensitive to shadow. For each plot we averaged the VIs
and the 186 hyperspectral bands after MNF inversion. Table 1 sum-
marizes the lidar and hyperspectral inputs used in tests.

Aerial photographs were acquired simultaneously with lidar
data using a Rollei H25 camera equipped with a Phase One Digital
Back. Images were georeferenced and orthorectified using the lidar
DEM. The orthophotos were acquired at 0.1 m spatial resolution,
and used as reference for visual screening during data analysis
(i.e. to visualize plot edge effects).
2.3. Retrieval models and tests

The large number of often correlated metrics from airborne li-
dar and hyperspectral data pose challenges in statistical modeling
of biomass due to the problems of multicollinearity and ‘‘curse of
dimensionality’’ (Adam and Mutanga, 2009; Dalponte et al.,
2009). We used Partial Least Squares (PLSs) regression to deal with
these issues. PLS regression is closely related to principal compo-
nent regression (PCR), but differs in that it uses the information
from the response variable in addition to the predictors for feature
transformation (Geladi and Kowalski, 1986). PLS regression has
been previously employed in spectral and chemical analysis of
tropical forests (Asner and Martin, 2008), for AGB estimation (Lei
et al., 2012; Goodenough et al., 2005), and as a method for dealing
with large hyperspectral datasets (Peerbhay et al., 2013).

We modeled AGB from single and fused lidar and hyperspectral
data, to understand the ability of our dataset to estimate AGB in an
African rainforest, and assess the usefulness of these data integra-
tion. For hyperspectral data we tested both MNF-inverted bands
and the derived VIs. The PLS regression results were compared
with those obtained by a multiplicative power model (MPM), well
suited to explain the usual power-law relationship occurring
among biological parameters (Marquet et al., 2005). Inputs for both
models were log transformed.

To develop the MPM, a forward stepwise regression of the log-
transformed predictors and the AGB values was used to select the
predictors; the initial model is then fitted using such predictors.
Any of the selected predictors which were not significant from
their p-value were removed (p > 0.05) and the model is refitted;
the procedure was iterated until all predictors are statistically sig-
Table 2
Test results obtained with different combinations of lidar metrics and hyperspectral featu

Inputs Multiplicative Power Model (MPM)

R2 RMSE

Lidar metrics 0.57 72.7
Hyperspectral bands 0.00 111.0
VIs 0.08 106.2
Lidar metrics + hyperspectral bands 0.57 72.7
Lidar metrics + VIs 0.57 72.7
nificant. For PLS regression, the transformed features were selected
by minimizing the 10-fold cross-validation prediction error. A tra-
ditional method like MPM or other common statistical techniques
is often used as a benchmark in literature for AGB estimation (Chen
et al., 2012) or vegetation type discrimination (Vaglio Laurin et al.,
2013). Comparison between MPM and PLS regression is useful to
illustrate the accuracy improvement.

We calculated the Variable of Importance in the Projection (VIP)
to evaluate importance of individual predictors for biomass esti-
mation; predictors with VIP scores >1 are considered especially rel-
evant for the mode l (Wold et al., 2001; Peerbhay et al., 2013).
3. Results

Based on lidar metrics alone, AGB was predicted with a coeffi-
cient of determination (R2) equal to 0.64 and a RMSE of
67.8 Mg ha�1 using PLS; results obtained by MPM were less accu-
rate (R2 = 0.57). Hyperspectral bands had limited predictive power
using PLS (R2 = 0.36), and none with MPM. The VIs had very limited
predictive power when entered into the models. Using PLS the
addition of hyperspectral bands to lidar metrics increased the
accuracy moderately (R2 = 0.70, RMSE 61.7 Mg ha�1), whilst replac-
ing the hyperspectral bands with the VIs resulted in an even smal-
ler improvement (R2 = 0. 67, RMSE 64.3 Mg ha�1). No improvement
of accuracy is obtained using MPM with combined lidar and hyper-
spectral dataset. In comparison to MPM, PLS produced improved
accuracies in all models, except VIs alone. The AIC (Akaike’s Infor-
mation Criteria) was also calculated to compare different PLS mod-
els (Chen et al., 2007). In general, compared to the model with the
lowest AIC value, the models with an AIC increase of 4–7 have con-
siderable less support and the ones with an AIC increase of >10
have no support (Burnham and Anderson, 2002). Among our PLS
models, the combination of lidar metrics and hyperspectral bands
has the lowest AIC value of 597 and thus the best performance. The
PLS model based on lidar metrics has an AIC value of 606, which
corresponds to an increment of 9 and indicates that such a model
is at least considerably worse than the model using both lidar met-
rics and hyperspectral bands. Table 2 illustrates the test results.

The scatterplots of the predicted vs. field observed AGB for dif-
ferent input combinations are presented in Fig. 3.

Among lidar metrics, the inputs obtaining VIP scores >1 in-
cluded all percentiles (except the 10th and the 100th), some low
range height bins, mean height and quadratic mean height. Highest
scores were obtained, in descending order, by the 40th height per-
centiles, 30th height percentiles, mean height, 50th and 60th
height percentiles. Among hyperspectral inputs, the higher scores
were assigned to bands in the green, and red-edge region of the
spectra, and in the near infrared region close to the end of the
available spectra. When using the combined dataset, all lidar met-
rics received scores >1 and greater than the hyperspectral bands.
Fig. 4 illustrates the most relevant input features selected by VIP
procedure for the models based on single lidar and hyperspectral
datasets.
res and through two different statistical models.

Partial Least Square Regression (PLSR)

R2 RMSE AIC

0.64 67.8 606
0.36 91.2 646
0.02 116.8 668
0.70 61.7 597
0.67 64.3 601



Fig. 2. In (A) and (B) false-color composite of hyperspectral data at 807.5 (R), 597.3 (G) and 467.3 (B) nm. In (A): strip of data where large crowns are visible. In (B): example of
edge-effect for a specific plot. In (C): the same edge effect in (B) is visualized in the aerial photograph. Plot edges are represented as black circles. In (D): the same plot in (B)
and (C) is visualized as a lidar point cloud.

Fig. 3. Scatterplots of predicted vs. field observed AGB for the following inputs: (a) lidar metrics, (b) hyperspectral bands, (c) lidar metrics and VIs, (d) lidar metrics and
hyperspectral bands.
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Fig. 4. VIP scores for individual lidar (a) and hyperspectral (b) datasets.

Fig. 5. AGB and number of trees in the 70 plots (total area = 87,500 m2) according to
different ranges of field-observed height.
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To help understand the selection of relevant input feature by
VIP for the lidar-based AGB model with respect to the forest struc-
ture, we graphically explored the distribution of trees and biomass
in 7 classes of height, at 10 m intervals each (Fig. 5).

4. Discussion

4.1. Comparison to other studies of mapping tropical rainforest
biomass

Our first aim was to test small footprint lidar for AGB estimation
of an African tropical moist forest. The accuracy of our estimate is
in within the range of those reported in other tropical studies that
use small-footprint lidar (Asner et al., 2009, 2010; Asner et al.,
2012b; Clark et al., 2011; d’Oliveira et al., 2012; Kennaway et al.,
2008; Kronseder et al., 2012; Mascaro et al., 2011a). As far as we
know, there are only two studies reporting usage of airborne lidar
for mapping African tropical forests AGB (Asner et al., 2011,
2012a), both undertaken in Madagascar with a customized Optech
3100EA instrument (Carnegie Institution for Science, USA). The
accuracy obtained in the current study is not far from that obtained
in southeastern Madagascar (Asner et al., 2011), where 46 plots of
0.28 ha were used. After adopting improved allometric relation-
ships to reflect regional variations in Madagascar, the authors re-
ported a R2 = 0.68 for their AGB estimate. However in the second
study, Asner et al. (2012a) reported a higher result (R2 = 0.88) for
three combined sites, including humid and dry forests and shrub-
land on the island, for which improved allometric relations and dif-
ferential correction of GPS measures were used. Per site results
were not reported, and it is not clear if the dataset from the 2011
study was incorporated into the 2012 one, for which the authors
reported a lower mean AGB.

We note that most tropical studies using small footprint lidar,
which achieve high accuracy of the estimates, are based on plots
more than double the area (0.28 ha) of our plots (Asner et al.,
2009, 2010, 2011, 2012a,b; Mascaro et al., 2011b). Mascaro et al.
(2011a,b)demonstrated in a tropical moist forest that lidar predic-
tion error, which is strongly related to the edge effect, scales with
plot area with a RMSE decreasing from 63.2 to 11.1 Mg C ha�1

when increasing the plot size from 0.04 ha to one hectare. Similar
conclusions are given by Kohler and Huth (2010) for another trop-
ical site. Furthermore, the edge effect – responsible for disagree-
ment between remote sensing and field plot measures over
which trees or parts of trees are inside the calibration plots – is
more marked in small plots and in the presence of large tree
crowns. In our study the plot size was less than the half of the size
most commonly used in lidar calibration studies. Furthermore,
since 25% of the measured trees had a DBH > 50 cm, the occurrence
of edge effects was likely and indeed often observed, with plots fre-
quently hosting very large crowns from neighboring mature trees
(Fig. 2).

In contrast to studies which report that the higher lidar height
percentiles explain most of the biomass variance (Patenaude
et al., 2004; Skowronski et al., 2007), in our case the maximum
VIP scores were assigned to the height percentiles included in
the 30–60th range (Fig. 3a). This is an evidence of the multilayered
structure of this mature forest, which possibly stores a large part of
biomass in the subcanopy layer. This also indicates that the
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biomass within a plot is not primarily driven by the tallest trees,
which despite having the individually largest biomass values are
nonetheless far less abundant than the mid-size trees (Fig. 5).

4.2. Sources of uncertainties

The relatively low accuracy (the best R2 was 0.70) we obtained
in this study could be associated with different sources of uncer-
tainty including: field measurement errors, plot locations errors,
and errors introduced by the allometric model. These errors, to-
gether with error caused by geometrical and radiometric correc-
tion of remotely sensed data, are well known sources of
uncertainty in remote sensing analysis (Lu et al., 2012).

In our datasets, there was a 5–6 years time lag between field
and remote sensing data acquisitions. Even if the growth of a ma-
ture forest in a 5-year period is limited, this temporal mismatch
can still cause errors in estimates due to natural mortality and
regeneration. We exclude plots located close to GRNP border to
limit the probability of abrupt forest changes, such as those result-
ing from illegal clearance or tree harvesting. It is known that forest
biomass grows at different rates according to its successional
stages (Hudak et al., 2012) and even in mature forests areas of
regeneration are present due to natural tree mortality.

In our study site, plot locations were measured using a recrea-
tional Garmin GPS. Obtaining accurate GPS measures can be diffi-
cult in tall and dense forests; as well as in regions which lack
base stations that allow for differential correction (Dominy and
Duncan, 2001), as was the case in our study area. Chen et al.
(2012) reported that the use of plot locations measured by uncor-
rected GPS decreased the R2 of the AGB estimates by 0.10–0.13 and
increased the RMSE by about 21–31% in the mixed conifer forests
of California.

Biomass mapping in Africa suffers from a major lack of regional
specific allometric equations. According to studies conducted in
the region (Henry et al., 2010; Djomo et al., 2010) the best available
option is to use the Chave et al. (2005) general equations. Never-
theless, these equations were obtained without including African
tree samples and the issue of their validity in Africa is still debated
due to limited data for comparative research. The generic allome-
tric equation that we used could be a major uncertainty. For exam-
ple Henry et al. (2010) estimated a difference of approximately 40%
in AGB values using site-specific vs. generalized allometric equa-
tions in West Africa.

The control of uncertainty sources, such as those here men-
tioned, can be a bigger challenge in African forests than in other
areas. Most of the African countries lack the technical and financial
capacities for field measures extensive collection, and very limited
infrastructure to support scientific research is available (Avitabile
et al. (2011), Baccini et al., 2008). The establishment of a field net-
work to collect quality ground truth for calibration of remote sens-
ing data, and the development of regional allometric equations, are
two major issues to which international programs should direct
their support.

4.3. Lidar and hyperspectral data fusion

The addition of hyperspectral features to lidar resulted in an in-
crease of R2 values from 0.64 to 0.70 (Table 2), which is a slightly
greater improvement than has been found in previous studies
(Chen, 2013). In northern biomes, Anderson et al. (2008) and Swa-
tantran et al. (2011) obtained respectively modest and insignificant
improvement using the Laser Vegetation Imaging Sensor (LVIS)
and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) fused
datasets. Their results are difficult to compare with ours, due to the
coarser resolution of those sensors and the difference in forests
types. Swatantran et al. (2011) suggested that the predictive power
of hyperspectral could be higher when lidar relationships with bio-
mass are weaker, as observed by Anderson et al. (2008) and Roth
(2009). This hypothesis is in part confirmed by our results, in
which the lidar-AGB relationship is not as high as elsewhere and
an increase in accuracy was brought by inclusion of hyperspectral
data. Latifi et al. (2012) used very high spatial resolution sensors,
namely a full waveform lidar and HyMap. They also reported min-
imal improvement in AGB estimates from fused datasets, using
PCR. The PLS regression used in this study is preferable to PCR,
which might account for the difference. The only AGB estimation
for a tropical area, carried out using a FLI MAP lidar and the hyper-
spectral HYDICE sensor, reported no improvement by the addition
of hyperspectral VIs and spectral mixture fractions to lidar metrics
(Clark et al., 2011), similar to the very small improvement we ob-
served using our VIs. The increase in accuracy observed with
hyperspectral original bands in our study can be explained by
the ability of PLS to exploit information from the whole spectrum.
The use of VIs, based on a limited subset of spectral bands, possibly
excludes important bands for biomass estimation.

Our visual assessment indicates that there is �1–4 m co-regis-
tration mismatching between hyperspectral and lidar data, which
complicates our evaluation of hyperspectral data for biomass esti-
mation. Given the geometric accuracy of airborne small-footprint
lidar usually being sub-meter horizontally, it would be ideal if
the georeferencing accuracy of hyperspectral is at the sub-meter
level as well, to maximize the use of information from both sen-
sors. This requires precise orthorectification of hyperspectral imag-
ery, preferably based on a Digital Surface Model (DSM) instead of a
Digital Terrain Model (DTM) because of the relief displacement
caused by trees. This georeferencing accuracy issue has to be taken
into account for prospective use of hyperspectral data in AGB esti-
mation, for which the mismatch with reference or other data can
be higher.

Latifi et al. (2012) and Papes et al. (2010) found that the most
useful spectral ranges for estimating vegetation biomass are green
and the NIR plateau, while Zhang et al. (2009) assumed that the
greenness indices might have a positive potential toward predict-
ing AGB. The VIP scores in our study confirmed that the green
and NIR portion of the spectra were useful for biomass estimation,
but higher scores were obtained for bands in the red-edge (Fig. 2b).
It is widely recognized that the red-edge position relates to the
health status of photosynthetic material in the vegetation (Horler
et al., 1983) but it is unclear how this correlates with biomass var-
iation, which calls for more future research along this line. The
AISA Eagle sensor used in this study has a wavelength range of
�400–900 nm, which can be a limitation considering that other
studies in literature have proved the significance of longer wave-
lengths (SWIR) for vegetation (Brown et al., 2000; Psomas et al.,
2011), in particular Gong et al. (2003) proved that SWIR and NIR
bands are most important for LAI estimation.

AGB-lidar modeling can be improved by stratifying the vegeta-
tion types using optical imagery or ancillary data (Clark et al.,
2011; Garcia et al., 2010). Chen et al. (2012) illustrated the positive
effect of integrating vegetation type maps derived by aerial pho-
tography in Sierra Nevada, using a mixed effects model. In temper-
ate or boreal forests, dominated by few species and where
vegetation type maps are often available, this approach can be fea-
sible. However, it is less clear how hyperspectral-based stratifica-
tion could be carried out in a tropical forest as our site, having
very high diversity of tree species, often without marked domi-
nance, and where detailed information on vegetation type is usu-
ally not present. The high number of tree species and thus
variations in tree morphology, beside variations in spectral re-
sponses, can be a reason for explaining the fact that biomass esti-
mation cannot be based on hyperspectral data alone. As a matter of
fact literature shows that it is more useful in low-biomass
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scenarios like grasslands where some studies show that up to 61%
of variation can be explained by VIs from hyperspectral data only
(Clevers et al., 2007).
5. Conclusions

REDD+ advocates better documentation of performances of re-
mote sensing data across ranges of biomes, vegetation cover,
topography/land forms, seasons, and land use patterns that occur
across developing countries (Holmgren, 2008). Recently, the 17th
Conference of the Parties (COPs) to the United Nation Convention
on Climate Change (UNFCCC) adopted the commitment that na-
tional REDD+ monitoring and reporting systems shall be based
on a combination of field measurements and remote sensing data.
Even if clear standards have not yet been established, the Global
Climate Observing System (GCOS, 2011) suggested some accuracy
levels, driven by the need to quantify carbon stocks to initialize and
test the carbon cycle and for national reporting, which are: <20%
error for biomass values over 50 Mg/ha, and 10 Mg/ha for biomass
values < 50 t/ha. Houghton et al. (2009) also suggested a maximum
of 18% AGB uncertainty. In the case of mature tropical forests, with
mean AGB often over 200 Mg/ha, this translates to an error below
40 Mg/ha which is often difficult to achieve even with very ad-
vanced tools such as lidar systems. For large area AGB estimation
in tropical environments, direct AGB retrieval based on radar sen-
sors, which have full mapping and all weather capabilities, could
thus be a cost-effective alternative to lidar sampling followed by
further upscaling, especially if new dedicated missions will be
launched, such as the European Space Agency Biomass.

Our research evidences that high quality ground truth data,
especially in terms of geolocation accuracy and larger plot size, is
needed when planning lidar-based AGB estimates in tropical Afri-
can forests, Our results suggest that the quality of ground truth
data can be even more important if airborne lidar is used as an
intermediate step of upscaling field-measured AGB to a larger area
or region, a procedure with associated additional uncertainty.

The methodology here presented includes an advanced retrieval
algorithm (PLS), significant preprocessing with innovative tech-
niques applied to hyperspectral data (MNF) and a method for test-
ing different features from data fusion. Such a straightforward
workflow can provide a robust method for evaluating the impor-
tance of spectral contributions and lidar metrics.

The findings related to hyperspectral and lidar data fusion pre-
sented in this research are encouraging, but call for additional re-
search. The possible role of hyperspectral data in direct AGB
estimation or stratification has to be clarified in different environ-
ments, and new VIs that can incorporate relevant biomass informa-
tion could be developed. As vegetation characteristics strongly
influence the sensors ability to retrieve information, additional re-
search in various ecosystems is needed to be able to generalize
conclusions about the usefulness of joint sensors use. Overall this
study contributes to enlarge research on lidar and hyperspectral
fused datasets applicability and provide interesting insight which
could orient future sensors development and missions.
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