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Quantifying the uncertainty of the aboveground biomass (AGB) and carbon (C) stock is crucial for understanding
the global C cycle and implementing the United Nations Program on Reducing Emissions fromDeforestation and
Forest Degradation (UN-REDD). The uncertainty analysis of remotely sensed AGB is tricky because, if validation
plots or cross-validation is used for error assessment, the AGB of validation plots does not necessarily represent
the actualmeasurements but estimates of the true AGB. Leveraging a recently published pan-tropical destructive-
ly measured tree AGB database, this study proposed a new method of characterizing the uncertainty of the re-
motely sensed AGB. The method propagates errors from tree- to landscape-level by considering errors in the
whole workflow of the AGB mapping process, including allometric model development, tree measurements,
tree-level AGB prediction, plot-level AGB estimation, plot-level remote sensing based biomass model develop-
ment, remote sensing feature extraction, and pixel-level AGB prediction. Applying such a method to the tree
AGB mapped using airborne lidar over tropical forests in Ghana, we found that the AGB prediction error is over
20% at 1 ha spatial resolution, larger than the results reported in previous studies for other tropical forests. The
discrepancy between our studies and others reflects not only our focus on African tropical forests but also the
methodological differences in our uncertainty analysis, especially in the aspect of comprehensively addressing
more sources of uncertainty. This study also highlights the importance of considering the plot-level AGB estimate
uncertainty when field plots are used to calibrate remote sensing based biomass models.

© 2015 Elsevier Inc. All rights reserved.
1 . Introduction

Tropical forests contain ~50% of the aboveground carbon (C) in global
vegetation (Hunter, Keller, Vitoria, & Morton, 2013), account for ~33% of
terrestrial net primary productivity (Bonan, 2008), and play a crucial role
in global C cycle and climate change (Grace, Mitchard, & Gloor, 2014).
Tropical forests have also been experiencing intense pressure from
land use changes such as deforestation and degradation (Berenguer
et al., 2014). However, substantial uncertainty remains in estimating
tropical forest C emissions from those human activities (Clark, Roberts,
Ewel, & Clark, 2011). Because land use change is a patchy process
(Ometto et al., 2014), accuratelymapping the spatial distribution of trop-
ical C stock and its dynamics is vital to reduce such uncertainty (Achard
et al., 2014). Remote sensing is a promising technology to achieve this
goal with its ability of providing synoptic view of the whole study area
(Chen, 2013; DeFries et al., 2007).

Considerable efforts have been devoted to map tropical forest bio-
mass at the landscape (e.g., Dubayah et al., 2010; Mascaro, Detto,
1 808 956 3512.
Asner, & Muller-Landau, 2011; Vaglio Laurin et al., 2014), national
(Asner et al., 2012), continental (Baccini, Laporte, Goetz, Sun, & Dong,
2008; Goetz et al., 2009), and even cross-continental (Baccini et al.,
2012; Saatchi et al., 2011) scales using remote sensing technology.
However, accompanying with the sheer number of biomass mapping
studies is the substantial variations among the various estimates of bio-
mass and C stock (Houghton, Lawrence, Hackler, & Brown, 2001;
Mitchard et al., 2013; Ometto et al., 2014), which makes it difficult to
choose a product for making forest management decision in mitigating
the impacts of climate change.

Central to understanding the quality of remotely sensed biomass
and C maps is to quantify the uncertainty of the estimated biomass
from remote sensing based models (Lu et al., 2014; Wang et al., 2009).
Root mean square errors (RMSE) is the most common statistic to char-
acterize the error of remote sensing based biomass models (Zolkos,
Goetz, & Dubayah, 2013) and it is calculated by comparing model pre-
diction to “true” biomass over a sample of forest plots. One of the key
distinctions of mapping biomass, compared to mapping many other
vegetation attributes such as tree height and basal area, is that the
ground truth biomass for calibrating a remote sensingmodel has rarely
been directly measured (Clark & Kellner, 2012). Instead, it is estimated
using allometric models with other tree- and site-level attributes, such
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http://dx.doi.org/10.1016/j.rse.2015.01.009
mailto:qichen@hawaii.edu
http://dx.doi.org/10.1016/j.rse.2015.01.009
http://www.sciencedirect.com/science/journal/00344257


135Q. Chen et al. / Remote Sensing of Environment 160 (2015) 134–143
as DBH (diameter at breast height), tree height and wood density, as
predictors. Both the allometric model predictions and tree attributes
could have errors,which can bepropagated to the plot-level biomass es-
timates and thus affect the uncertainty of the biomass estimation from a
remote sensing based model.

Remotely sensed biomass mapping involves the combined use of
two types of models: 1) allometric models for estimating tree- and
plot-level biomass using tree attributes such as DBH, tree height, and
wood density, 2) models for predicting pixel-level biomass using re-
mote sensing derived variables. Both models have parameters, the un-
certainty of which could lead to uncertainty in biomass estimation.
The omission of model parameter uncertainty will underestimate the
biomass prediction uncertainty (Yanai et al., 2010).

Overall, the uncertainty assessment of remotely sensedbiomass needs
to consider errors and uncertainty in the whole process of upscaling bio-
mass from tree to plot and landscape levels, including those related to
field measurements, allometric models, lidar data, and statistical model-
ing. Many of these issues have been investigated in the past (see
McRoberts and Westfall (2014) for a recent review), especially from the
perspective of estimating the mean statistic of forest attributes
(e.g., volume, biomass) and its uncertainty over a large area
(e.g., Berger, Gschwantner, McRoberts, & Schadauer, 2014; Breidenbach,
Antón-Fernández, Petersson, McRoberts, & Astrup, 2014; Gregoire et al.,
2010; McRoberts & Westfall, 2014; Ståhl, Heikkinen, Petersson, Repola,
& Holm, 2014). However, only a few studies (e.g., Gonzalez et al., 2010)
have quantified the biomass uncertainty at the pixel level when remote
sensing data are used for biomass estimation.

The main goal of this study is to develop a methodology to assess
the uncertainty of remotely sensed aboveground biomass (AGB) at
the pixel level over western African tropical forests in Ghana with a
synergistic use of field data, airborne lidar, allometric modeling,
and remote sensing based biomass modeling. This study addresses
these questions: 1) what the errors associated with allometric
models and lidar-based biomass models are, 2) how the errors of
tree measurements collected in a forest plot will be propagated to
the biomass estimates at the tree- and plot-level when an allometric
model is used to predict biomass, 3) how the errors in lidar metrics
will be propagated to AGB prediction, 4) how the plot-level AGB er-
rors affect the lidar-biomass AGB modeling and prediction errors,
and 5) what the major error sources in AGB prediction at the tree-
and pixel levels are.
2 . Study area and data

2.1. Study area

Our study area transverses transects along a ~100 km latitudinal
gradient in Southwest Ghana close to the border with Ivory Coast
(Fig. 1). These transects are along the orbits of ICESat andweremapped
with airborne lidar with width of ~250 m to 750 m. The first group of
transects is located in the Bia Conservation Area that comprises of Bia
National Park (BNP) and Bia Resource Reserve (BRR). The area covers
the transition between two of Ghana's forest types,Moist Evergreen for-
est in the south andMoist Semi-deciduous forests in the north. BRRwas
logged in 1980–90, and possibly even after; it can be impacted by natu-
ral (fire, elephants' damages) and illegal human-related disturbance.
BNP has a better protection status and no logging records, but fires, el-
ephants' damages and illegal access could occur. The second group of
transects is located in the Dadieso Forest Reserve (DFR), which lies
south of the Bia Conservation Area but north of Boin river Forest Reserve
and Disue Forest Reserve. The vegetation of the reserve is transitional
between Moist Evergreen and Wet Evergreen types. DFR was illegally
logged and surrounded by communities and coffee farms; furthermore
it has swampier characteristics, and flooding can represent a frequent
natural disturbance.
2.2. Field measurements

Along the ICESat orbits, the field plotswere set up at the footprints of
GLAS laser shotswith the goal of upscaling biomass from local to region-
al scale. The GLAS waveforms were first screened to exclude the shots
that are saturated or contaminated by clouds (Chen, 2010). So, the
plots can be considered as a quasi-transect sample of the forests. The
field plots have a square shape of 40 m by 40 m. For each plot, DBH,
tree height, and species information was collected for all trees having
DBH N 20 cm. For treeswith DBH in the 10–20 cm range, the same infor-
mation was collected in subplots of 400 m2. We did not measure wood
density but use estimates from Chave et al. (2009). A total of 36 field
plots are used in our analysis (13 in BNP, 3 in BRR, and 20 in DFR).

2.3. Airborne lidar data

The study area was surveyed by an airborne campaign in March
2012 over pre-definedflight lines covering thefield plots, using a Pilatus
PC-6 Porter aircraft equippedwith lidar and hyperspectral sensors and a
digital camera for aerial photographs. The lidar sensor ALTM GEMINI
(Optech Ltd.), characterized by a 1064 nm laser wavelength and able
to record up to 4 range measurements, was operated 650–850 m
above ground level. The minimum laser density was set to 11 points/
m2. The positional errors of the laser returns in the horizontal and ver-
tical dimensions were lower than 0.27 m.

The raw all-returns point cloudwas processed using the Toolbox for
Lidar Data Filtering and Forest Studies (TIFFS) (Chen, 2007) to derive a
range of metrics for AGB estimation from each plot, including: mean
height, quadratic mean height, standard deviation height, height bins
at 5 m intervals and 10% percentile heights. TIFFS used the ground
returns identified by the data provider to generate a DTM (Digital Ter-
rain Model) and calculated the relative height above terrain of each
laser return by subtracting the corresponding DTM elevation from its
original Z value. The lidarmetricswere derived using the relative height
of all laser points. We generated lidar metric maps of 40 m by 40 m cell
size, equivalent to the field plot size.

2.4. Pan-tropical tree AGB database

We developed an allometric model from a pan-tropical destructive
tree database compiled by Chave et al. (2014) (see http://chave.ups-
tlse.fr/pantropical_allometry.htm) to fully characterize the tree AGB
prediction errors. This database (called Chave14 hereinafter) includes
a total of 4004 trees from 53 undisturbed and five secondary forest
sites across tropics in Latin America, Southeast Asia, and Africa. The
tree measurements include DBH (cm), tree height (m), wood specific
gravity or wood density (g/cm3), and total oven-dry AGB (kg).

3 . Methods

3.1. Errors of tree-level AGB prediction

We first developed a pan-tropical allometric model from the
Chave14 tree database. An allometric model is used to predict AGB
using other easily measurable tree attributes such as DBH, tree height,
and wood density (denoted as x as a whole). The model is usually cali-
brated from a sample of trees for which AGB has beenmeasured via de-
structive sampling and x has been obtained by direct measurements or
estimation:

E Btreejxð Þ ¼ f tree β; xð Þ ð1Þ

var Btreejxð Þ ¼ σε;tree
2 ð2Þ

where E() and var() represent the expectation and variance of a vari-
able; ftree is the allometric model with parameter(s) β to predict tree

http://chave.ups-tlse.fr/pantropical_allometry.htm
http://chave.ups-tlse.fr/pantropical_allometry.htm


Fig. 1. The study area (transects in themiddle upperfigure), lidar transects (left and rightfigures as examples), and 40by40mfield plots (see squares over the lidar transects as examples).
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AGB (i.e., Btree); σε;tree
2 is the variance of AGB for trees with attributes x.

Note that β and x could be scalars or vectors [β1, β2,…] and [x1, x2, …].
Instead of using the log-transformation method (e.g., Chave et al.,

2014), we developed a Generalized Least Squares (GLS) based approach
that can directlymodel AGBwithout the need of bias correction (Brown,
Gillespie, & Lugo, 1989).

Btree ¼ f tree β; xð Þ þ εtree ð3Þ

εtree ¼ g β; x; θð Þξ ð4Þ

where εtree is the residual between themeasured and estimated AGB for
a tree; g(β, x, θ) is a function of xwith parameters β and θ to model re-
siduals; ξ is a standard normal variable. The common forms for g are lin-
ear, proportional, or power functions of f(β, x). We found that the
residuals from OLS model fitting increase with tree size and thus used
the proportional model:

g β; x; θð Þ ¼ θ f tree β; xð Þ ð5Þ
Note that, since ξ is a standard normal variable, the standard devia-
tion of the residuals εtree is:

σε;tree ¼ θ f tree β; xð Þ ð6Þ

We used the same model form as the one in Chave et al. (2014) for
ftree(β, x):

f tree β; xð Þ ¼ β1 ρD2H
� �β2 ð7Þ

where ρ, D, and H are wood density, DBH, and tree height, respectively.
With the choice of such a model, β= [β1, β2] and x= [ρ, D, H]. The de-
tailed steps of fitting the allometric model using GLS are described in

Appendix 1. The model parameters (denoted as β̂1, β̂2, and θ̂) were esti-
mated by assuming nomeasurement errors exist in the Chave14 dataset.

An important distinction has to be made between the AGB estima-
tion errors of 1) a tree from the sample for model development
(i.e., from the Chave14 tree database) and 2) a new tree (i.e., not in
the Chave14 database) for which AGB is to be predicted. The AGB
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error of the former isσε,tree. However, the error of the latter is called tree
AGB prediction error, which is always larger than σε,tree due to 1) uncer-
tainty in model parameters, and 2) errors in the measurements of tree
attributes x. The prediction error is what we should be concerned
about when the allometric model is applied to a new place for biomass
estimation. The next two subsections 3.1.1 and 3.1.2 discuss the AGB
prediction errors of the allometric model.

3.1.1. Errors of AGB prediction associated with model parameters

When the estimated parameters β̂1 and β̂2 are plugged into Eq. (7) to
estimate the AGB of a new tree, we get

B̂tree ¼ β̂1 ρD2H
� �β̂2 ð8Þ

The estimated tree AGB, B̂tree, is uncertain due to the uncertainty in
the estimates of parameters. The AGB prediction error caused by
model parameters' uncertainty is denoted as σf,tree. With linear approx-
imation (see, e.g., Section 2.3 of Bates and Watts (1988)), σf,tree can be
calculated as in Appendix 2.

Note that B̂tree essentially represents the mean (or expectation of)
biomass of trees with the same attributes x. σf,tree characterizes the
“standard error” of the mean, not the error of individual tree AGB. If

B̂tree is used as the AGB estimate at the individual level, its error is larger:

σ tree
2 ¼ σε;tree

2 þ σ f ;tree
2 ð9Þ

whereσε;tree
2 is calculated using Eq. (6) for the new tree; σtree is the tree

AGB prediction error of the allometric model.

3.1.2. Errors of AGB prediction associated with tree attributes
Theσtree shown in Eq. (9) is derived based on the assumption that no

errors exist in themeasurements of new tree attributes x. In fact, tree at-
tributes x can bemeasured or estimatedwith errors. Because both σε,tree

and σf,tree are dependent on x, the errors in x will be propagated to the
tree AGB estimates. We found that, when the x errors are considered,
the tree AGB prediction error σtree is as follows (see Appendix 3):

σ tree
2 ¼ σε;tree

2 þ σ f ;tree
2 þ θ̂2 þ 1

� �
var f tree β̂; x

� �� �
þ var σ f ;tree

� �
ð10Þ

where var f tree β̂; x
� �� �

can be estimated using first-order Taylor Series

expansion (Gertner, Cao, & Zhu, 1995) and var(σf,tree) can be estimated
using Monte-Carlo simulation (Gonzalez et al., 2010). Note that when

tree measurements x are error-free, both var f tree β̂; x
� �� �

and var(σf,

tree) are equal to zero, making Eq. (10) equivalent to Eq. (9). We denote

θ̂2 þ 1
� �

var f tree β̂; x
� �� �

þ var σ f ;tree

� �
as σ x;tree

2 to indicate that the

relevant tree AGB prediction errors are caused by errors in x.

3.2. Errors of plot-level AGB estimated using field data

Eqs. (8)–(10) can predict tree AGB and errors for the field plots used
for developing remote sensing based biomass models. The predicted

plot-level AGB density B̂plot of a plot is the sum of individual tree B̂plot di-
vided by the plot area s (m2):

B̂plot ¼
Xntree;plot
i¼1

B̂tree;i=s ð11Þ

where ntree,plot is the number of trees within the plot; B̂tree;i is calculated
using Eq. (8). Note that since the minimum DBH of the tree measure-

ments of our field plots in Ghana is 10 cm, B̂plot quantifies the oven-
dry aboveground biomass density for live trees of DBH N 10 cm. The

B̂plot in Eq. (11) has a unit of kg/m2, which can be converted to Mg/ha
by multiplying a factor of 10.

The standard deviation of B̂plot for the plot is:

σ B̂plot
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXntree;plot
i¼1

σ tree;i
2
=s

vuut ð12Þ

where σtree,i is the tree AGB error calculated using either Eq. (9) or
Eq. (10). Note that this formula assumes that the errors among trees
on the same plot are independent. McRoberts and Westfall (2014)
found that such an assumption is reasonable for estimating the mean
stem tree volume over large areas.

3.3. Errors of AGB estimates from lidar-based biomass model

Using the plot-level AGB estimates B̂plot and lidar metrics (denoted
as z), a lidar-based biomass prediction model can be developed:

B̂plot ¼ f plot φ; zð Þ þ εplot ð13Þ

where φ is the lidar-biomass model parameter(s); εplot is the residual
term of the model. The caret (^) is used in this model formulation be-
cause the response variable, plot-level AGB, cannot be considered to
be an observation without error, but rather an estimate obtained from
application of the allometric model.

We chose the multiplicative power models (Chen, Vaglio Laurin,
Battles, & Saah, 2012; Vaglio Laurin et al., 2014) for biomass estimation:

f plot φ; zð Þ ¼ φ0z1
φ1z2

φ2…zm
φm ð14Þ

where z1, z2, and zm are different lidar metrics. With such a model form,
φ = [φ0, φ1, φ2, …, φm] and z = [z1, z2, …, zm].

We found that εplot increases with plot-level AGB density when OLS
was used formodel fitting. Therefore, wemodeled the residuals directly:

εplot ¼ kf plot φ; zð Þξ ð15Þ

where k is a parameter, ξ is a standard normal variable. Correspondingly,
the standard deviation of the lidar-biomass model residuals (i.e., εplot) is:

σε;plot ¼ kf plot φ; zð Þ ð16Þ

For the lidar-based biomass model, the AGB of a field plot is not an

actual measurement but an estimate (Fig. 2). The estimate B̂plot is differ-

ent from the true AGB density Bplot for a plot. If the uncertainty of B̂plot is
not considered in model fitting, the standard deviation of themodel re-
siduals (i.e., σε,plot) will be underestimated. To address this issue, we
modified the GLS method as shown in Appendix 4. The estimated pa-

rameters are denoted as φ̂ and k̂.
Once the lidar-based biomass model has been calibrated, Eq. (14)

can be used to predict AGB density B̂pix for pixels that have equivalent
areas to the field plots. As a reminder, similar to the tree-level allometric
model, Eq. (14) is to predict the expected (or mean) biomass of pixels
with the same lidar metrics z. This predicted mean has a standard
error caused by the uncertainty in the estimated model parameters φ̂.
We denote this error as σf,pix.

When lidar metrics z has no errors, the predicted AGB at the pixel-
level has an error of:

σpix
2 ¼ σε;pix

2 þ σ f ;pix
2 ð17Þ

where σε,pix is calculated using Eq. (16) for the pixel; σpix is the AGB
prediction error of the lidar-based biomass model for a pixel.



Fig. 2. Modeling the residuals of the lidar-based biomass model. Red dots are estimated

plot-level AGB density B̂plot . Black lines are standard deviation of B̂plot . The green dot is a
hypothetical value of the true AGB, Bplot, for plot j. The dark dot is the predicted AGB
from lidar fplot(φ, z) for plot j. The curved surface is the lidar-based AGB prediction func-
tion, Eq. (21).
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Similar to the derivations for tree-level AGB prediction errors (see
Appendix 3), we found that, when the lidar metrics z of a pixel has er-
rors, the error σpix

2 is:

σpix
2 ¼ σε;pix

2 þ σ f ;pix
2 þ k̂

2 þ 1
� �

var f plot φ̂; zð Þ
� �

þ var σ f ;pix

� �
ð18Þ

where var f plot φ̂; zð Þ
� �

again can be estimated using first-order Taylor

Series expansion and var(σf,pix) can be estimated using Monte-Carlo

simulation. When lidar metrics z have no errors, both var f plot φ̂; zð Þ
� �

and var(σf,pix) are equal to zeros, which implies that the above two
equations are equivalent in such a situation. The sum of the last two

terms of the right hand side of Eq. (18), k̂
2 þ 1

� �
var f plot φ̂; zð Þ
� �

þ var

σ f ;pix

� �
, are caused by errors in lidar metrics z and thus are denoted as

σ z;pix
2.
3.3.1. Selection of lidar metrics for model fitting
Considerable correlations exist among the individual lidar metrics.

We used a two-step procedure to select the most relevant ones for bio-
mass prediction. First, we did a log-transformation of both the response
and predictor variables, which turned the multiplicative power model
to a linear model. Then forward stepwise regression was used to select
the statistically significant lidar metrics. The inference of the model pa-
rameters at the log-scale is not exactly the same as the one in the
original scale. To avoid the exclusion of useful lidar metrics, we set the
p-values for variables entering and removing from the model to be 0.1
and 0.2, respectively, higher than the common values of 0.05 and 0.1.
Second,we used the lidarmetrics selected by stepwise regression to de-
velop the multiplicative power model using nonlinear model fitting
technique. The p-values of the individual variables in the multiplicative
power model were checked and, any statistically insignificant variables
(p-value N 0.05) were removed and themodels are refitted. The second
step can be iterated until all variables are statistically significant (Vaglio
Laurin et al., 2014). After the lidarmetricswere selected, theywere used
in the GLS method for parameter estimation and error characterization
(see Eqs. 13–18).
3.4. Evaluating the impacts of field measurement errors and lidar metric
errors

The uncertainty analysis of the AGB maps derived from field mea-
surements and remote sensing data requires information about the er-
rors of tree attributes x and lidar metrics z. We do not have direct
measurements of these errors, so we rely on the previous studies to
set up the error estimates for our analysis. Throughout the text, we
refer to the standard deviation of an estimate ormeasurements as abso-
lute errorwhile the standard deviation divided by the estimate or mea-
surement mean as relative error. Note that here we ignore the bias that
could exist in the treemeasurements or lidar data. Forwood density, we
followed Chave et al. (2004) and set the relative errors to 10%. For tree
height, Chave et al. (2004) used a relative error of 10%, which is higher
than 7.8% of temperate forest used by Phillips, Brown, Schroeder, and
Birdsey (2000). However, Hunter et al. (2013) found the precision of
tropical tree height measurement could range from 3% to 20% of the
tree height. Here, we adopted the upper limit, 20%, in our analysis.
Chave et al. (2004) used a sumof two normal distributions to character-
ize the DBH error. We simplified this to set the relative error of DBH to
be 5%, which is higher than 2–3% used in temperate forests (Gonzalez
et al., 2010; Phillips et al., 2000) and considers the difficulty of measur-
ing DBH in tropical forests. We will introduce the errors of lidar metrics
z in the next section after we have determined the remote sensing
biomass model.

4 . Results and discussion

4.1. Errors of tree-level AGB prediction

The GLS estimates of the allometric model parameters are: β̂1 ¼ 0:0

704, β̂2 ¼ 0:9701, and θ̂ ¼ 0:3777. Therefore, the pan-tropical allometric
model for predicting tree AGB is:

B̂tree ¼ 0:0704 ρD2H
� �0:9701 ð19Þ

where ρ is in g/cm3, D is in cm, H is in m, and B̂tree is in kg.
The equation for σε,tree is:

σε;tree ¼ 0:3777B̂tree ð20Þ

This indicates that the relative AGB error caused by σε,tree is about
37.8%. With a database of fewer trees, Chave et al. (2004) reported a
smaller relative σε,tree error of 31.3%. The larger σε,tree here is mainly re-
lated to the difference between the Chave14 database and the one used
in Chave et al. (2004).

Besides B̂tree andσε,tree, we also calculated themodel parameter relat-
ed AGB error σf,tree and tree attributes x related AGB error σx,tree for all
trees (n=1191) of the 36 field plots in Ghana. The equation to calculate
σf,tree is presented in Appendix 5. We found that, if we additionally con-
sider the two other error sources (i.e.,σf,tree andσx,tree), the relative error
of tree AGB prediction increases from 37.8% to 50.0%. This is slightly
higher than the 47% value reported in Chave et al. (2004),mostly caused
by an increase in our σε,tree.

The relative AGB prediction error caused by σf,tree alone is very small

(σ f ;tree=B̂tree = 0.74%), mainly because the sample size is large (n =
4004) for the Chave14 tree database and the variance–covariance of
model parameters are inversely related to the sample size. We did sim-
ulations to reduce the sample size from 4004 to 400 and 40. The results
showed that the relative AGB prediction error related to σf,tree increases
from 0.74% to 2.52% and 5.69%, respectively. Thus, using a large tree da-
tabase such as Chave14 for calibrating the allometric model is valuable
to reduce AGB prediction error related to model parameters.
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For AGB prediction at the tree-level, σε,tree, σf,tree, and σx,tree contrib-
ute to 57.59% ¼ σε;tree

2=σ tree
2

� �
, 0.02% ¼ σ f ;tree

2=σ tree
2

� �
, and 42.39%

¼ σx;tree
2=σ tree

2
� �

of the total error σtree, respectively. Therefore, for
our field plots in Ghana, the tree AGB prediction errors were dominated
bymodel prediction residuals (σε,tree) and errors in tree attributes x (σx,

tree).

4.2. Errors of plot-level AGB estimates derived from field data

The previous section shows that the tree-level AGB error is 50.0%
when all error sources are considered. At the plot-level, the correspond-

ing AGB density B̂plot error reduces to 19.5%. The cause of the smaller rel-
ative AGB error at the plot level is mathematical: the plot-level AGB
standard deviation σ B̂plot

involves the square root of sum (Eq. 12)

while AGB mean B̂plot directly uses the sum in the numerator (Eq. 11).

Hence, the relative error,σ B̂plot
divided by B̂plot, usually has a negative re-

lationship with the number of trees within a plot (Chave et al., 2004).

4.3. Errors of pixel-level AGB estimates from lidar-based biomass model

Based on the feature selection method introduced in 3.3.1, the lidar-
based biomass model developed from the 36 field plots in Ghana is:

B̂pix ¼ 14:55hmean
1:27h20to25

0:38 ð21Þ

where hmean is the mean height of laser points; h20to25 is the proportion
of laser pointswithin 20 to 25m. The lidarmetricswere calculatedusing
all returns including those on the ground. This model was developed
with the assumption of spatial independence among model prediction
residuals. The experimental variogram calculated from the model pre-
diction residuals did not show obvious spatial autocorrelation, which
suggests that the above model can be used to predict pixel-level AGB
and its errors without bias (Barrett, Galbally, & Graetz, 2001).

The equation for σε,pix is:

σε;pix ¼ 0:479B̂pix ð22Þ

This means that, at the plot- or pixel-level, the relative AGB predic-
tion error due to lidar-biomass model residuals is 47.9%.

Using the 40-mmaps of lidarmetrics hmean and h20to25, we produced

maps of B̂pix and σε,pix of the same spatial resolution. Besides, we calcu-
lated the pixel-level model parameter related AGB error σf,pix and lidar
metrics related AGB error σz,pix (Fig. 3).We calculatedσz,pix by assuming
the relative errors of both hmean and h20to25 to be 10%. The uncertainty in
lidarmetrics aremainly related to the errors in extracting ground eleva-
tion from laser points as well as the sampling nature of lidar data. Asner
et al. (2012) used an error estimate of 5% for lidar heightmetrics.We set
the error estimate arbitrarily higher, simply for the purpose of testing
how much AGB prediction errors can be caused by lidar metrics errors
in a worse scenario.

At the pixel level, we found that the relative AGB prediction error

caused byσf,pix and σz,pix are 16.2% and 16.0%, respectively (σ f ;pix=B̂pix ¼
16:2%,σ z;pix=B̂pix=16.0%). Recall that if onlyσε,pix is considered, the rel-
ative AGB prediction error is 47.9%. When both σf,pix and σz,pix are addi-
tionally considered, the total relative AGB prediction error increases to
54.1%. σε,pix, σf,pix, and σz,pix contribute to 80.5% ¼ σε;pix

2=σpix
2

� �
, 10.6%

¼ σ f ;pix
2=σpix

2
� �

, and 8.8% ¼ σ z;pix
2=σpix

2
� �

of the total error σpix, re-
spectively. So, when the lidar-biomass model was applied to the study
area, the dominant error source is the AGB error related to model resid-
uals (i.e., σε,pix). Note that the error related tomodel parameters,σf,pix, is
no more negligible as in the tree allometric model. This is because the
sample size for developing the lidar-biomass model (n = 36) is much
smaller than the sample size for developing the allometric model
(n = 4004).

4.4. Analysis of the remotely sensed AGB prediction errors

When all the error sources are considered, the previous section indi-

cated that the relative AGB prediction error at the pixel-level, σpix=B̂pix,
is 54.1%, which seems high. Next, we discuss different error sources and
seewhether thepixel-level relativeAGBprediction error can be reduced
and, if yes, how.

First, the large pixel-level AGB errors are partially caused by the
fact that we considered the errors in measuring tree attributes x or
estimating the lidar metrics z of field plots. If we assume that tree at-
tributes were measured without errors, the pixel-level relative AGB
prediction error reduces from 54.1% to 51.9%. If we further assume
the lidar metrics are error-free as well, the AGB error reduces to
49.4%. Overall, the errors in tree measurements and lidar metrics
contributed only a small portion of the total errors, especially consid-
ering that we intentionally set the errors in tree measurements and
lidar metrics larger than those from most previous studies. There-
fore, it is unlikely that improving the tree measurements and lidar
data processing skills upon the state-of-the-art will dramatically re-
duce the pixel-level AGB relative error.

Another error source is related to the lidar-biomass model parame-
ter uncertainty. As indicated in Appendix 2, σf,pix is inversely related to
the number of field plots. Recall that the pixel-level AGB relative error
is 49.4% if no errors exist in tree measurements and lidar metrics. We
created bootstrap samples from the 36 field plots and found that the
error reduces slightly from 49.4% to 47.3%, 46.7%, and 46.6% when boot-
strap sample sizes offield plots are 100, 200, and500, respectively. Thus,
collecting a large number of field plots does not have a large impact on
σf,pix either.

At the pixel level, σε,pix contributes about 80% of the total AGB pre-

diction error. The corresponding relative AGB prediction error, σε;pix=

B̂pix , is 47.9%. σε;pix=B̂pix is also known as the relative RMSE when
RMSE is calculated using calibration plots instead of separate validation
or test plots (Zolkos et al., 2013). Our relative RMSE value is similar to
the one from a separate study we did in Sierra Leone (Vaglio Laurin
et al., 2014) but it is among the highest compared to those reported
for other tropical forests (Zolkos et al., 2013). Smaller relative RMSEs
can be obtained if we have larger field plots or aggregate the biomass
maps to coarser resolutions. However, our simulation and analysis (de-
tails not shown due to space limitation) indicated that, with either ap-

proach, the relative AGB prediction error σpix=B̂pix

� �
is larger than

20% at 1 ha spatial scale. Several recent studies (Asner & Mascaro,
2014; Zolkos et al., 2013) stated that the uncertainty of lidar-based
AGBmapping can reach 10% at the 1 ha spatial resolution. The divergent
results between ours and those are not only related to our focus on
African tropical forests but also because we are using a different ap-
proach for uncertainty analysis, especially in the aspect of comprehen-
sively addressing more sources of uncertainty.

4.5. Difference between our error analysis method and conventional ones

A common practice to evaluate remotely sensed AGB prediction
error is to set aside validation field plots or use cross-validation for ac-
curacy assessment. Such methods are legitimate if the AGB of the vali-
dation plots are directly measured. Unfortunately, directly measuring
tree AGB for forest plots is extremely labor-intensive and thus rarely
carried out (Asner & Mascaro, 2014; Clark & Kellner, 2012). Error prop-
agation methods (Chave et al., 2004; Gonzalez et al., 2010), as used in
this study, represent a fundamentally different approach to characterize
the errors of the remotely sensed AGB. If the conventional error assess-
ment method using validation plots are considered to be retrospective,



Fig. 3.Maps of lidar metrics, AGB, and errors. hmean and h20to25 are two lidar metrics. AGB is the mapped aboveground biomass, σpix is the pixel-level AGB error, σε,pix, σf,pix, and σz,pix are
errors related to lidar-biomass model residuals, model parameters, and lidar metrics, respectively.
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the error propagation method we are using is forward-looking. The key
of the conventional error assessment method is the true AGB measure-
ments of the validationfield plotswhile the key of the error propagation
method is the true AGB measurements of the trees used for developing
the allometric method. So, it is impossible for us to propose ourmethod
if destructive tree AGB databases such as Chave14 were not released
publicly.

Error propagations can be done via either Monte-Carlo simulations
(McRoberts &Westfall, 2014) or first-order Taylor linear approximation
as in this study. The advantage of the approximation approach lies in its
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computation efficiency, but the estimated model parameter errors
might differ from their true values for nonlinear models. We evaluated
the parameter curvature issue (Bates & Watts, 1988) and found that it
is negligible for both the tree-level allometric model and the lidar-
based biomass model.

4.6. Impacts of plot-level AGB uncertainty on lidar-based AGBmodeling and
prediction

In Section 4.2, we showed that the plot-level AGB uncertainty is
19.5% when the plot-level AGB is upscaled from tree AGB values (for
the case that all the tree-level errors related to allometric model resid-
uals, allometric model parameters, and tree measurements are consid-
ered). Unlike our approach (see Appendix 4), most previous studies
did not consider the plot-level AGB uncertainty in remote sensing bio-
mass modeling. If this type of error is not considered in our study, the
relative AGB error related to the lidar-biomass model residuals

σε;pix=B̂pix

� �
will be 41.9% instead of 47.9%; the total pixel-level relative

AGB prediction error σpix=B̂pix

� �
will be 48.7% instead of 54.1%. So, our

study shows that the AGB estimation and prediction errors can be
underestimated by amoderate amount if the plot-level AGB uncertainty
is ignored in the lidar-biomass modeling.

5 . Conclusions

The major contribution of this study is to introduce an analytical
framework of characterizing AGB prediction errors by considering er-
rors in the whole workflow of AGB mapping, including allometric
model development, tree measurements, tree-level AGB prediction,
plot-level AGB estimation, plot-level lidar-biomassmodel development,
plot-level lidar metrics generation, and pixel-level AGB prediction. Our
implementation of model development, for both allometric and lidar-
biomass models, and error characterization using the GLS method
enables us to estimate three important AGB prediction uncertainties si-
multaneously: 1) uncertainty related to model residuals, 2) uncertainty
related topredictors (treemeasurementsor lidarmetrics), and3)uncer-
tainty related to model parameters. Our method is not only useful for
the remote sensing mapping community but also for researchers who
use solely forest plots for AGB estimation (e.g., using large-area forest
inventory plots for estimating mean AGB and its errors over an area).
The application of our uncertainty analysis framework to tropical forests
sites in Ghana indicates that the AGB prediction uncertainty is larger
than 20% at 1 ha spatial resolution, much larger than the 10% goal pro-
posed in previous studies. This calls for more studies in AGB estimation
and mapping over tropical forests in Africa. This study also highlights
the importance of considering the plot-level AGB estimate uncertainty
when field plots are used to calibrate remote sensing based biomass
models.
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Appendix 1. Generalized least squares (GLS) method for model
fitting

Eqs. (3)–(7) can be solved iteratively as follows:

1) Fit a nonlinearmodel for Eqs. (3) and (7) to obtain an initial estimate
of the allometry model parameter, β(0), by assuming the residuals
εtree are constant.
2) Obtain an initial maximum likelihood estimate of themodel residual
parameter θ(0) by minimizing the objective function Ltree:

Ltree ¼
Xntree
i¼1

Btree;i− f tree β 0ð Þ
; xi

� �� �2
2� θ f tree β 0ð Þ; xi

� �� �Þ2 þ log θ f tree β 0ð Þ
; xi

� �� ��0
B@

1
CA ðA1Þ

where ntree is the number of trees that are used to develop the allom-
etrymodel (for the Chave14 database, ntree=4004) and i is the index
of the trees. After θ(0) is obtained, it will be used along with β(0) in
Eq. (6) to estimate the standard deviation of residuals σε,tree

(0) for
every tree.

3) Define a weight function w that is inversely related to σε,tree
(0) as

follows:

w ¼ 1

σ 0ð Þ
ε;tree

 !2

¼ 1
θ 0ð Þ f tree β 0ð Þ; x

� �
 !2

ðA2Þ

and solve Eqs. (3) and (7) using the nonlinear weighted least squares
method (Brown et al., 1989) to get updated estimates of the param-
eter β(1).

4) Repeat steps 2) and 3) until convergence. The final estimated model
parameters are denoted as β̂ and θ̂.

Appendix 2. Standard error of predicted tree AGB mean

With linear approximation, the standard error σf,tree of the predicted
AGB mean for a tree can be calculated from:

σ f ;tree
2≈
Xp
j¼1

Xp
k¼1

∂ f
∂β j

∂ f
∂βk

cov β̂ j; β̂k

� �
≈
Xp
j¼1

Xp
k¼1

∂ f
∂β j

∂ f
∂βk

S
ntree−p

C−1
jk ðA3Þ

S ¼
Xntree
i¼1

wi Btree;i− f tree β̂; xi
� �� �2 ðA4Þ

C jk ¼
Xntree
i¼1

wi
∂ f
∂β j

∂ f
∂βk

ðA5Þ

where ntree is the number of trees that are used to develop the allometry
model (ntree = 4004 for the Chave14 database), i is the index of the

trees, f tree β̂; xi
� �

is the allometric model with parameter β̂,wi is defined

in Eq. (A4) for every tree i, C is the p × p (p= the number of allometry

model parameters β̂, which is 2 in our case) squarematrix. Note that the
partial derivative ∂f/∂β in Eq. (A5) is calculated for every tree i in the
Chave14 database while the partial derivative in Eq. (A3) is for a new
tree in our Ghana study site, soσf,tree is a function of the new tree's attri-
butes x.

Appendix 3. Error of predicting tree AGB when a tree has
measurement errors in x

When both AGB errors σε and σf (related to model residuals and pa-
rameters, respectively) are considered, the AGB of a tree is:

Btree ¼ f tree β; xð Þ þ σε;treeξε þ σ f ;treeξ f ðA6Þ

where both ξε and ξf are independent standard random variables.
The three terms at the right hand side of the above equation are in-

dependent, so we have:

var Btreeð Þ ¼ var f tree β; xð Þð Þ þ var σε;treeξε
� �

þ var σ f ;treeξ f

� �
ðA7Þ
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Also we can derive that:

var σε;treeξε
� �

¼ var θ f tree β; xð Þξεð Þ ¼ θ2 var f tree β; xð Þð Þ þ f tree β; xð Þð Þ2
� �

ðA8Þ

var σ f ;treeξ f

� �
¼ var σ f ;tree

� �
þ σ f ;tree

2 ðA9Þ

where var(σf,tree) is the variance of σf,tree caused by x errors.
Combine the above three equations, and we have:

var Btreeð Þ ¼ σε;tree
2 þ σ f ;tree

2 þ θ̂2 þ 1
� �

var f tree β̂; x
� �� �

þ var σ f ;tree

� �
ðA10Þ

Appendix 4. Revisionof theGLSmethod for predictingplot-level bio-
mass using lidar

To consider the uncertainty in B̂plot; j in the GLSmethod, wemodified
the objective function of lidar-based biomassmodel residual parameter
k as follows:

Lplot ¼
Xnplot
j¼1

B̂plot; j− f plot φ; z j

� �� �2 þ σ2
B̂plot; j

2� kf plot φ; z j

� �� �2 þ log kf plot φ; z j

� �� �0
B@

1
CA
ðA11Þ

where nplot is the number of field plots in Ghana used for developing
lidar-based biomass model (nplot = 36 in our study); j is the index of
the field plots. Compare Eqs. (A1) and (A11), and one will see that the

difference is the addition of the term, σ2
B̂plot; j

which is the uncertainty

of B̂plot; j.

Appendix 5. Equation for estimating σf,tree related to allometric
model parameter uncertainty

The variance–covariance matrix of the estimated parameters of the
allometric model is:

var β̂1

� �
cov β̂1; β̂2

� �
cov β̂1; β̂2

� �
var β̂2

� �
2
4

3
5 ¼ 2:4656� 10−6 −4:217� 10−6

−4:217� 10−6 7:7686� 10−6

� �

ðA12Þ

The estimated parameters are: β̂1 ¼ 0:0704, β̂2 ¼ 0:9701. According
to Eq. (A3), we know that:

σ f ;tree
2≈ ρD2H

� �0:9701	 
2
� 2:4656� 10−6
� �

þ0:1408� ρD2H
� �0:9701	 
2

� ln ρD2H
� �

� −4:217� 10−6
� �

þ 0:0704� ρD2H
� �0:9701 � ln ρD2H

� �	 
2
� 7:7686� 10−6

ðA13Þ
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