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Estimating tree aboveground biomass (AGB) and carbon (C) stocks using remote sensing is a critical
component for understanding the global C cycle and mitigating climate change. However, the importance
of allometry for remote sensing of AGB has not been recognized until recently. The overarching goals of
this study are to understand the differences and relationships among three national-scale allometric
methods (CRM, Jenkins, and the regional models) of the Forest Inventory and Analysis (FIA) program
in the U.S. and to examine the impacts of using alternative allometry on the fitting statistics of remote
sensing-based woody AGB models. Airborne lidar data from three study sites in the Pacific Northwest,
USA were used to predict woody AGB estimated from the different allometric methods. It was found that
the CRM and Jenkins estimates of woody AGB are related via the CRM adjustment factor. In terms of
lidar-biomass modeling, CRM had the smallest model errors, while the Jenkins method had the largest
ones and the regional method was between. The best model fitting from CRM is attributed to its inclusion
of tree height in calculating merchantable stem volume and the strong dependence of non-merchantable
stem biomass on merchantable stem biomass. This study also argues that it is important to characterize
the allometric model errors for gaining a complete understanding of the remotely-sensed AGB prediction
errors.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Accurate spatially-explicit estimates of forest aboveground bio-
mass (AGB) and carbon (C) stocks provide critical information for
understanding and mitigating climate change (Houghton et al.,
2009; Le Toan et al., 2011; Achard et al., 2014). Numerous studies
have been done to map AGB using optical, radar, and lidar remote
sensing data (see, e.g. Lu, 2006; Koch, 2010; Gleason and Im, 2011;
Chen, 2013; Lu et al., 2014 for reviews). Along with the sheer num-
ber of studies are the often divergent AGB and C estimates from
different remotely-sensed models over the same geographical area
(Mitchard et al., 2014). The differences among remotely-sensed
AGB estimates can be attributed to a multitude of factors including
sensor and remote sensing data type, forest conditions of field
plots, field plot size, statistical models, and accuracy assessment
methods (Zolkos et al., 2013).

One crucial but insufficiently investigated factor that can lead to
substantial AGB biomass prediction variations is the allometric
model used to estimate tree biomass (Clark and Kellner, 2012).
The tree biomass for calibrating a remote sensing AGB model has
rarely directly measured; instead, it is estimated using allometric
models with other easily measurable tree- and site-level attributes,
such as DBH (diameter at breast height), tree height and wood den-
sity, as predictors (Chen et al., 2015). To estimate AGB over large
spatial scales, different allometric models have been proposed over
the tropics (Brown, 1997; Chave et al., 2014) and in the United
States (Heath et al., 2008; Woodall et al., 2011).

In the United States, the Forest Inventory and Analysis (FIA)
program of the Department of Agriculture Forest Service
(USDA-FS) has developed several kinds of allometric methods to
estimate AGB at the national scale. For years, FIA has used allomet-
ric models at the species- or species groups levels to estimate tree
AGB within each of the FIA regional (Pacific Northwest, Interior
West, Northern, and Southern) units, which hereinafter is called
the regional method. Each FIA regional unit often uses different
model forms (e.g., power or exponential models) and biomass pre-
dictors (e.g., some use tree height and site index while others do
not) to fit AGB allometric models. The model differences some-
times reflect not necessarily the true allometry variations caused
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by local climate, soil, and evolution history but to a large extent the
personal choice of each region’s model builder based on his/her
knowledge and preference. This results in artifacts of biomass vari-
ations across different regions.

To alleviate this issue, Jenkins et al. (2003) did a meta-analysis
of more than 2500 species-level allometric models in the literature
and developed allometric models for 10 broad species groups using
only one model form (i.e., power) and the same biomass predictor
(i.e., DBH), hereinafter called the Jenkins method. However, since
the number of species groups is small (only 10), each group is tax-
onomically much broader than the individual species or species
groups of the regional method. So, although the Jenkins method
estimates AGB consistently, it is very likely that, on a national aver-
age, it has AGB prediction errors larger than the regional method.

The Component Ratio Method (CRM) (Heath et al., 2008;
Woodall et al., 2011) was proposed in recent years as an attempt
to combine the strengths of both the regional and Jenkins methods.
In other words, CRM is designed to integrate the national consis-
tency from the Jenkins method and the high precision of AGB pre-
diction from the regional method. Since 2012, the USDA-FS has
used CRM instead of the Jenkins method, the conventional ‘‘gold
standard’’ for estimating biomass, in the Inventory of U.S.
Greenhouse Gas Emissions and Sinks.

The shift from the conventional Jenkins and regional methods to
CRM has significant implications because the national biomass
estimates derived from them provide critical information for the
U.S. to make policies in response to global warming and climate
change, especially in the intergovernmental negotiations. The
choice of allometric methods affects not only the biomass esti-
mates derived from the U.S. national forest inventory (i.e., FIA)
plots (e.g., Woodbury et al., 2007; Domke et al., 2012) but also
the remotely sensed biomass maps when the estimated AGB is
used to calibrate remote sensing data.

In the past, the Jenkins and regional methods have been used in
remote sensing studies to map biomass from local to national
scales (e.g., Blackard et al., 2008; Kellndorfer et al., 2012; Zhao
et al., 2012). However, few have investigated the use of CRM for
remotely sensed biomass studies. Moreover, a critical analysis of
CRM, especially its relationships to the Jenkins and the regional
methods from which it is derived, is lacking in the literature. To
my best knowledge, no research has explored the impacts of using
CRM in lieu of Jenkins and regional methods on remotely-sensed
AGB modeling. Thus, the main objective of this study is to use data
from three study sites in the Pacific Northwest region for (1) inves-
tigating the relationships among CRM, Jenkins, and regional allo-
metric methods and (2) exploring the impacts of the alternative
allometry on the lidar-biomass model performance.
2. Study area and data

2.1. Study area

The study area encompasses a total of three sites: two in
California and one in Oregon (Fig. 1). The two California sites are
located on the eastern slope of the Sierra Nevada mountain range:
one is the USDA-FS Sagehen Creek Experimental Forest and the
other is the USDA-FS Lake Tahoe Basin Management Unit
(LTBMU). The third site is the Panther Creek Watershed located
in the Yamhill River Basin in western Oregon. Hereinafter, the
three sites are called Sagehen, Tahoe, and Panther, respectively.

The three sites are all conifer forests, but their species composi-
tions are different. The Sagehen site covers approximately 3925 ha,
where the major species include white fir (Abies concolor Lindl. ex
Hildebr.), red fir (Abies magnifica A. Murray), lodgepole pine (Pinus
contorta Douglas ex Loudon), Jeffrey pine (Pinus jeffreyi Balf.), sugar
pine (Pinus lambertiana Douglas), western white pine (Pinus monti-
cola Douglas ex D. Don), and mountain hemlock (Tsuga mertensiana
(Bong.) Carr.) (Chen et al., 2012). The Tahoe site covers about
93,598 ha, and the major vegetation is Jeffrey pine, white fir,
California red fir (Abies magnifica A. Murray bis), lodgepole pine,
incense cedar (Calocedrus decurrens (Torr.) Florin), quaking aspen
(Populus tremuloides Michx.), western white pine, sugar pine, west-
ern juniper (Juniperus occidentalis Hook.), and mountain hemlock.
The Panther site is about 2580 ha where the species is dominated
by Douglas fir (Pseudotsuga menziesii (Mirb.) Franco), with signifi-
cant amounts of red alder (Alnus rubra Bong.), western hemlock
(Tsuga heterophylla (Raf.) Sarg.), western red cedar (Thuja plicata
ex D. Don), grand fir (Abies grandis (Douglas ex D. Don) Lindl.),
bigleaf maple (Acer macrophyllum Pursh) and several other species
(Flewelling and McFadden, 2011) .

2.2. Forest field data

For Sagehen, field data from 80 circular plots of 12.6 m radius
(0.05 ha) were used. These plots, as a part of the systematic grid
of field plots measured in 2004–2006, were used to sample the for-
est types of the study area with 125-m spacing. The plots were
located with Trimble� GeoXH™ handheld GPS with Zephyr
Geodetic antenna with an average horizontal accuracy of 0.1 m.
At each plot, all trees greater than 5 cm in diameter at breast
height (DBH, breast height = 1.37 m) were measured with a nested
sampling design. Canopy trees (P19.5 cm DBH) were tagged and
measured in the whole plot; understory trees (P5 cm DBH to
<19.5 cm DBH) were measured in a randomly selected third of
the plot. Tree measurements include species, DBH, tree height,
and vigor. A total of six vigor classes were defined that include
information about whether a tree is dead or alive (Chen et al.,
2012).

At Tahoe, over 1000 trees were mapped in 2012 for 56 circular
plots of 17.6 m radius (0.1 ha) using a Nikon DTM-322 total station.
These plots were initially established through two LTBMU projects:
(1) the Multi-Species Inventory and Monitoring (MSIM) project
that collected field plots on National Forest System (NFS) lands
throughout the basin from 2002–2005; (2) the Lake Tahoe Urban
Biodiversity (LTUB) project that established plots across multiple
land ownerships at lower elevations (<7500 ft) in the basin from
2003 to 2005. Plot locations were selected using a combination
of systematic/grid sampling and stratified random sampling
(White and Manley, 2012). At each plot, all trees greater than
2 cm in DBH were measured. Tree measurements include species,
DBH, tree height, height to live crown, and tree status (live, dead,
unhealthy, or sick) (Saah et al., 2013).

The field data at Panther are from 78 circular plots of 16 m
radius (0.08 ha or 0.2 acre) and were collected in the fall and win-
ter of 2009 and spring of 2010. The field data include information
about species, DBH, tree height, height to live crown, and tree sta-
tus (live, cut, or dead). At each plot, all trees with DBH >0.5 cm are
measured. Out of the 78 plots, 42 were established through a strat-
ified random sample using canopy cover, canopy height, forest
stand maps, hardwood percentage, crown depth indices derived
from airborne lidar data collected in 2007 and NAIP (National
Agriculture Imagery Program) imagery in 2005. The rest 36 plots
were installed in conjunction with a soil survey, which was not
dependent upon the forest conditions. Plot centers were estab-
lished to an error of <0.25 m using a combination of GPS and cadas-
tral survey (Flewelling and McFadden, 2011) (Table 1).

2.3. Airborne lidar data

The lidar data at Sagehen were collected from September 14 to
17, 2005 using an Optech ALTM 2050 system on an airplane flying



Fig. 1. Location of the three study sites: Sagehen (upper right), Tahoe (lower right), and Panther (upper left). The green dots are the locations of field plots. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Field plots and lidar data of the study sites.

Site Plot number Plot size Plot sampling Lidar point density
(points/m2)

Sagehen, California 80 0.05 ha Systematic 2–4
Tahoe, California 56 0.1 ha Systematic & stratified random �8 or more
Panther, Oregon 78 0.08 ha Stratified random & cadastral survey �8 or more
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at an altitude of �800 m and average velocity of 260 km per hour.
The ALTM 2050 acquired up to three returns per pulse at a pulse
frequency of 50 kHz, scan frequency of 38 Hz, and a maximum scan
angle of 15� from nadir, creating a swath width of �580 m. The
point density is about 2–4 returns per square meter (Chen et al.,
2012).
Lidar data were acquired surrounding Lake Tahoe from August
11th to August 24th, 2010 using two Leica ALS50 Phase II laser sys-
tems mounted in a Cessna Caravan 208B. The Leica systems were
set to a pulse frequency of 83–105.9 kHz, flight height of 900–
1300 m, and scan angle of ±14�. The resulting point density is
P8 pulses per square meter.



98 Q. Chen / ISPRS Journal of Photogrammetry and Remote Sensing 106 (2015) 95–106
At Panther, the airborne discrete-return lidar data collected on
July 15, 2010 were used, which utilized a Leica ALS60 sensor
mounted in a Cessna Caravan 208B. The Leica ALS60 system was
set to a pulse frequency of P105 kHz, flight height of 900 m, and
scan angle of ±14�. The resulting point density is also P8 pulses
per square meter. The airborne lidar data from both Lake Tahoe
and Panther were acquired by the same company so they have
similar characteristics (Table 1).
3. Methods

3.1. Individual tree biomass estimation using allometric models

The aboveground biomass of a tree includes three major com-
ponents: stem, branches, and foliage. A whole tree stem can be fur-
ther broken into (1) wood and bark along the horizontal
dimension, or (2) merchantable stem (the portion from 1-foot
stump to 4-inch top), 1-foot stump, and 4-inch top along the ver-
tical dimension (Fig. 2). Different allometric models could use dif-
ferent combinations of biomass components to calculate the total
biomass.
3.1.1. The Jenkins method
Jenkins et al. (2003) considered the total aboveground biomass

(Btotal,Jenkins) as the sum of four biomass components: mer-
chantable stem wood (BmStemWood,Jenkins), merchantable stem bark
(BmStemBark,Jenkins), foliage (Bfoliage,Jenkins), and the other (1-foot
stump, 4-inch top, and branches combined). The Jenkins method
includes models of (1) Btotal,Jenkins for 10 species groups, (2) bio-
mass fractions of merchantable stem wood, merchantable stem
bark, and foliage for two vegetation types (hardwood vs. soft-
wood). Since the regional and CRM methods do not include models
for calculating foliage biomass, in this study I compared the woody
AGB (i.e., the aboveground biomass without foliage) from the three
allometric methods. For the Jenkins method, the woody AGB
(AGBJenkins) is the difference between total aboveground biomass
Btotal,Jenkins and foliage biomass Bfoliage,Jenkins.
Fig. 2. Aboveground biomass components of a
AGBJenkins ¼ Btotal;Jenkins � Bfoliage;Jenkins ð1Þ
3.1.2. The regional method
The FIA PNW (Pacific Northwest Research Station) regional

models (Waddell and Hiserote, 2005) calculate the woody AGB
(AGBregional) as the sum of three biomass components: total stem
wood (BtStemWood,regional), total stem bark (BtStemBark,regional), and
branches (Bbranch,regional).

AGBregional ¼ BtStemWood;regional þ BtStemBark;regional þ Bbranch;regional ð2Þ

In the FIA PNW database, BtStemWood,regional is calculated as the pro-
duct of the CVTS (total stem wood volume from ground to tip) and
wood density; CVTS is estimated using species-level models with
both DBH and H as predictors. For the majority of species,
BtStemBark,regional and Bbranch,regional are estimated using
species-level models that use both DBH and H as predictors; for a
few species (e.g., sugar pine, western hemlock, and western juni-
per), they use DBH as the only predictor. Unlike the Jenkins method,
the regional method usually has different model forms for calculat-
ing the biomass components of different species.

3.1.3. The CRM method
CRM calculates the woody AGB (AGBcrm) as the sum of mer-

chantable stem wood (BmStemWood,crm), merchantable stem bark
(BmStemBark,crm), 1-foot stump (Bstump,crm), and the combination of
4-inch top and branches (BtopBranch,crm):

AGBcrm ¼ BmStemWood;crm þ BmStemBark;crm þ Bstump;crm þ BtopBranch;crm

ð3Þ

Like the regional method, BmStemWood,crm and BmStemBark,crm are
calculated as the product of merchantable stem volume and den-
sity for wood and bark, respectively. The merchantable stem bark
volume is proportional to the merchantable stem wood volume.
The CRM and regional methods also share the method for calculat-
ing stem wood volume. The difference is that CRM calculates mer-
chantable stem wood volume (CV4) while the regional method
whole tree (left) and a tree stem (right).
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calculates the total stem wood volume (CVTS). However, the two
types of volumes are related: for trees of DBH P12.7 cm (or
5 in.), CV4 can be calculated from CVTS through the following
equations:

BA ¼ 0:005454154� DBH2 ð4Þ

TARIF¼ CVTS�0:912733

1:033� 1:0þ1:382937�e 4:015292�DBH
10ð Þ

� �
�ðBAþ0:087266Þ�0:174533

CV4 ¼ TARIF� ðBA� 0:087266Þ=0:912733;

where CV4 and CVTS are both in cubic feet, DBH is in inches, BA is
the basal area in square feet; for trees of DBH <12.7 cm, CV4 is set to
0 (Zhou and Hemstrom, 2010).

CRM calculates Bstump,crm and BtopBranch,crm using the following
approach:

Bstump;crm ¼
BmStem;crm

BmStem;Jenkins
Bstump;Jenkins

BtopBranch;crm ¼
BmStem;crm

BmStem;Jenkins
BtopBranch;Jenkins

ð5Þ

where the CRM merchantable stem biomass BmStem,crm is the sum of
BmStemWood,crm and BmStemBark,crm; the Jenkins merchantable stem
biomass BmStem,Jenkins is the sum of BmStemWood,Jenkins and
BmStemBark,Jenkins; the 1-foot stump biomass Bstump,Jenkins is calcu-
lated based on Raile (1982); and the sum of 4-inch top and branches
biomass BtopBranch,Jenkins is calculated as the difference between 1)
total biomass Btotal,Jenkins, and 2) the sum of foliage (Bfoliage,Jenkins),
merchantable stem (BmStem,Jenkins), and stump (Bstump,Jenkins) bio-
mass. These equations are based on the assumption that the ratio
of stump or the sum of 4-inch treetop and branch biomass to mer-
chantable stem biomass is the same for CRM and Jenkins methods.
BmStem,crm/BmStem,Jenkins is also called the CRM adjustment factor,
denoted as hereinafter CRMAdjFac (Woodall et al., 2011). For sapling
trees of DBH <12.7 cm, the biomass AGBcrm is calculated as
AGBJenkins times the sapling adjustment factor (Woodall et al.,
2011).

3.2. Calculation of biomass density at the plot level

To be consistent across the three sites, only trees of DBH >= 5 cm
are considered in this analysis. The biomass of individual trees are
summed within each plot and divided by the plot area to compute
the biomass density at the plot level. For Sagehen that has a nested
sampling design, biomass from understory trees of 5 cm <= DBH
<19.5 cm is multiplied by a factor of three to calculate the total
biomass within each plot. Since dead trees usually do not generate
many returns from airborne lidar, only live trees are considered in
our analysis (Chen et al., 2012).

3.3. Airborne lidar data processing

The airborne lidar data were processed using the Toolbox for
Lidar Data Filtering and Forest Studies (Tiffs) (Chen, 2007) to (1) fil-
ter the lidar point cloud into ground returns and non-ground
returns, if this had not been done when the data were delivered
from lidar vendors, (2) generate DTM (Digital Terrain Model) by
interpolating the ground returns to raster grids of 1 m resolution,
(3) compute the canopy height of every laser point by taking the
difference between its Z Cartesian coordinate and the correspond-
ing terrain elevation, and (4) overlay the field plot boundary with
the point cloud to extract the lidar metrics from the canopy height
of laser points within each plot. The generated lidar metrics
include mean, standard deviation, skewness, kurtosis of height,
quadratic mean height, height bins at 5 m intervals, and percentile
heights (10th, 20th, . . . 100th percentile) (Chen et al., 2012).

3.4. Plot-level biomass statistical modeling using airborne lidar data

The impacts of allometry on lidar-biomass modeling were analyzed
by developing representative regression and machine-learning
models for predicting plot-level AGB density and examining their
model fitting statistics. Regression models construct explicit model
structure often based on a few lidar features, which are selected or
transformed from a large number of lidar metrics (e.g., Lu et al.,
2012; Vaglio Laurin et al., 2014; Asner and Mascaro, 2014).
Machine-learning models are usually data-driven and thus
produce implicit model structure (e.g., Chen and Hay, 2011;
Gleason and Im, 2012; Li et al., 2014; Mascaro et al., 2014).

Based on the literature, three regression models were
developed:

AGB ¼ a� Hb
m ð6Þ

AGB ¼ a� Hb
qm ð7Þ

LnðAGBÞ ¼ a� Hmc þ b� CVc þ c � CCf ð8Þ

where Hm and Hqm are the mean and quadratic mean heights of all
returns, respectively; Hmc and CVc are the mean and coefficient of
variance of canopy return heights, respectively; CCf is calculated
from first returns as the ratio of the numbers of canopy returns to
all returns; a, b, and c are model coefficients. Canopy returns are
defined as the laser returns that are higher than 1 m.

These models were chosen also because they can estimate bio-
mass across relatively wide geographic areas and thus have good
model generality (Chen, 2013). For example, the mean height has
been used in boreal (Lim et al., 2003), temperate (Lefsky et al.,
2002), and tropical (Asner et al., 2012; Asner and Mascaro, 2014)
forests. The quadratic mean height has been used in Sagehen in a
previous study (Chen et al., 2012) and in temperate forest of the
eastern U.S. (Lefsky et al., 1999). Note that both Hm and Hqm are cal-
culated from all returns so they incorporate information of both
horizontal and vertical canopy structure (Chen, 2013; Lu et al.,
2014). Model (8) was tested over three sites in Washington and
Alaska by Li et al. (2008), who argued that Hmc and CVc, carry infor-
mation about tree height and crown depth along the vertical direc-
tion and CCf represents canopy cover along the horizontal direction
so that they can explain the majority of biomass variations. I also
tried other parametric models reported from the literature (e.g.,
Magnussen et al., 2012), but they did not produce better perfor-
mance (results not reported here) and thus were not included.

The machine-learning models chosen are support vector regres-
sion (SVR) and random forests (RF). The relationships between AGB
and lidar predictors are usually nonlinear. SVR can transform the
nonlinear problem into a linear one via the use of kernel functions
to map the original feature space into higher dimensional space
(Gunn, 1998; Smola and Schölkopf, 2004; Szuster et al., 2011). A
few studies (e.g., Chen and Hay, 2011; Gleason and Im, 2012) found
that SVR can outperform regression or other machine-learning
algorithms for AGB modeling. In this study, the radial basis func-
tion kernel was used and the model parameters were determined
by coarse- and fine-grid search similar to Chen and Hay (2011).
RF is an ensemble of trees that are grown with bootstrap samples
and randomly selected variables at each tree node for splitting. It is
a non-parametric approach that can model complex nonlinear
relationship and thus is gaining popularity in modeling AGB (e.g.,
Li et al., 2014; Mascaro et al., 2014). In this study, the RF parame-
ters (the number of trees, the minimum leaf size, and the number
of variables randomly selected at each node) were determined
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based on the criteria of minimizing the prediction errors of the
out-of-bag (oob) observations.

Five-fold cross-validation was used to produce model fitting
statistics, including R2 (coefficient of determination) and RMSE
(root mean square error). Since different allometric methods could
produce different AGB estimates for the same trees, the relative
RMSE (RMSE divided by AGB estimates) in percentage was also
calculated.

4. Results and discussion

4.1. Tree-level and plot-level AGB

Table 2 summarizes the mean tree woody AGB at each site for
each allometric method. At the two California sites, on average,
Jenkins has the highest AGB, followed by regional method
while CRM has the smallest AGB; the means of regional and CRM
AGB are about 20% and 30% less than Jenkins AGB mean,
respectively. However, at Panther, CRM has the highest AGB, fol-
lowed by Jenkins and regional methods; the AGB mean difference
among the three allometric methods is as small as about 5–10%
there.

The mean woody AGB density at the plot level follows the same
pattern of mean woody AGB of individual trees among the three
sites (Table 3). For example, at Sagehen, the Jenkins method pro-
duced the highest mean AGB density of 277 Mg/ha. With regional
and CRM methods, the AGB density is 224 Mg/ha and 187 Mg/ha,
respectively. At Panther, the highest mean AGB density is from
CRM (333 Mg/ha), followed by Jenkins (313 Mg/ha) and regional
(302 Mg/ha) methods. Paired t-tests indicated that, at the both tree
and plot levels, the AGB between any two of the allometric models
are different at the significance level of 0.05 at any of the three
sites.

4.2. Revisit the CRM method and its relationship with the Jenkins
method

To explain the woody AGB difference from the three allometric
methods, the CRM method was revisited by combining Eqs. (3) and
(5) and it was found that (see Appendix A):

AGBcrm ¼
BmStem;crm

BmStem;Jenkins
AGBJenkins ð9Þ

The above equation indicates that the ratio between AGBcrm and
AGBJenkins is equal to the CRM adjustment factor CRMAdjFac. This
not only reduces the computation of AGBCRM compared to the orig-
inal way introduced in Heath et al. (2008) and Woodall et al. (2011)
Table 2
Summary of tree-level AGB and merchantable stem biomass in kg at the three study sites

Site n AGB

Jenkins Regional CRM

Sagehen 1898 564 456 384
Tahoe 924 1238 954 882
Panther 3394 589 558 621

Table 3
Summary of plot-level AGB and merchantable stem biomass density in Mg/ha at the three st

Site n AGB

Jenkins Regional CRM

Sagehen 80 277 224 187
Tahoe 56 210 162 150
Panther 72 313 302 333
(i.e., the method introduced in Section 3.1.3) but also concisely
summarizes the relationship between woody AGB from the
Jenkins and CRM methods.

Note that Eq. (9), by definition, holds for any particular tree. To
examine whether this relationship can be up-scaled, the CRM and
Jenkins methods were used to calculate at each site (1) the mean
merchantable stem biomass of all trees (Table 2) and (2) the mean
density of merchantable stem biomass of all plots (Table 3). The
results show that Eq. (9) is well preserved even when individual
tree biomass is averaged or summed. For example, at Panther,
CRMAdjFac is 1.0517 while the ratio of their mean tree-level AGB
is 1.0549. Overall, negligible differences exist between the
CRMAdjFac and the CRM/Jenkins ratio for mean AGB at the both
tree- and plot-levels (Tables 2 and 3).

In essence, it is the distribution of CRMAdjFac from all trees that
determines the relationship between CRM and Jenkins woody AGB
estimates over an area. Fig. 3(a) shows the boxplot of CRMAdjFac for
trees grouped by species at Sagehen. At this site, the most domi-
nant species is white fir (Fig. 3(b)), which has CRMAdjFac < 1 for
the majority of its trees (Fig. 3(a)). This is also true for the next
three dominant species including California red fir, lodgepole pine,
and Jeffrey pine. The only tree species that has average CRMAdjFac

greater than 1 is western white pine, but the proportion of its trees
is less than 3%. The fact that the majority of trees have
CRMAdjFac < 1 at Sagehen can explain why CRM has lower than
AGB estimates than Jenkins there. Likewise, at Tahoe, the most
dominant tree species (Jeffrey pine, white fir, California red fir,
and lodgepole pine, Fig. 3(d)) have average CRMAdjFac < 1
(Fig. 3(c)), so CRM also produced lower AGB estimates than
Jenkins. At Panther, the two most dominant species are
Douglas-fir and red-alder, which consist of about 80% of all trees
in the field plots (Fig. 3(f)). Their CRMAdjFac medians are both
slightly higher than 1 (Fig. 3(e)). This can explain that why the
CRM AGB is slightly higher than Jenkins AGB estimates.

4.3. Relationship between CRM and regional methods

The CRM and regional woody AGB estimates should be closely
related because (1) both the CRM and regional methods calculate
stem wood biomass based on the multiplication of wood volume
and density, namely the biomass expansion factor approach, (2)
the merchantable wood volume (CV4) used in CRM is closely
related to the total stem wood volume (CVTS) used in the regional
method via Eq. (4), and (3) stem wood usually becomes the major
biomass component when trees grow larger (see Figs. 5 and 6 in
Jenkins et al., 2003). To confirm such a hypothesis, the relationship
between CRMAdjFac and AGBregional/AGBJenkins was analyzed and it
. n is the number of trees within each site. CRMAdjFac is the CRM adjustment factor.

Merchantable stem biomass

CRM/Jenkins ratio Jenkins CRM CRMAdjFac

0.6798 468 317 0.6773
0.7123 1034 736 0.7122
1.0549 485 510 1.0517

udy sites. n is the number of plots at each site. CRMAdjFac is the CRM adjustment factor.

Merchantable stem biomass

CRM/Jenkins ratio Jenkins CRM CRMAdjFac

0.6735 229 153 0.6660
0.7123 175 125 0.7122
1.0628 257 273 1.0596



Fig. 3. CRM adjustment factor (CRMAdjFac, left column) and composition (right column) of different tree species at the three study sites (Sagehen, Tahoe, and Panther). X-axis
represents tree species with USDA PLANTS symbol:ABCO (white fir), ABMA (California red fir), ACMA3 (western hemlock), AGBR (grand fir), ALRU2 (red alder), CADE27
(incense cedar), JUOC (western juniper), PICO (lodgepole pine), PIJE (Jeffrey pine), PILA (sugar pine), PIMO3 (western white pine), POTR5 (quaking aspen), PSME (Douglas-fir),
THPL (western redcedar), TSHE (bigleaf maple), and TSME (mountain hemlock). The OTHR symbol at Panther represents all species that have <1% trees within all plots. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Relationship between the aboveground biomass without foliage (AGB) regional/Jenkins ratio and CRMAdjFac for different species. See the Fig. 3 caption for the meanings
of the USDA PLANTS tree species symbols.
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was found that the majority of data points are located along the 1:1
line (Fig. 4), which indicates that the two ratios are not much dif-
ferent from each other overall. Remember that CRMAdjFac is equal
to AGBcrm/AGBJenkins. This implies that, on average, AGBcrm and
AGBregional should be of similar magnitude at these sites. This can
explain why AGBregional is also much smaller than AGBJenkins when
AGBcrm is much smaller than AGBJenkins at Sagehen and Tahoe
(Tables 2 and 3). Note for certain species (e.g., western hemlock
at Panther), the relationship CRMAdjFac and AGBregional/AGBJenkins

deviates much from the 1:1 (Fig. 4(c)). So, the ultimate relationship
between CRM and regional AGB depends on both species composi-
tion and tree size distribution.

4.4. Impacts of allometry on lidar-biomass model performance

Table 4 lists the goodness-of-fit statistics of airborne lidar mod-
els for estimating plot-level woody AGB density. Overall, CRM has
the best model fit, followed by the regional method while Jenkins
has the worse fit. For example, when the results from all statistical
methods and sites are averaged, the cross-validated R2 for CRM,
regional, and Jenkins methods is in a descending order of 0.81,
0.72, and 0.63, respectively; correspondingly, their relative RMSE
increases with values of 26.4%, 33.8% and 34.3%, respectively.
Note that lidar metrics are calculated mainly based on the heights
of the laser points. The Jenkins method does not include tree height
in their AGB estimate while the regional method does for most tree
species in this study. So, it is expected that the regional woody AGB
estimates can be better fitted using airborne lidar data than the
Jenkins woody AGB estimates, which is consistent with the results
from Zhao et al. (2012).

CRM has model fit even better than the regional method.
Remember that the CRM and regional methods used the same
approach for calculating stem wood biomass. So, the difference of
their model fitting statistics must be attributed to the calculation
of other major biomass components including stem bark and
branches. For CRM, the merchantable stem bark biomass is related
to the merchantable stem wood biomass through two
species-specific constants (bark volume percentage and bark wood
density); the branch biomass is related to the stem biomass
through the Jenkins biomass fraction models, which were devel-
oped for hardwood vs. softwood. In contrast, the regional method
uses species-specific and size-dependent models to calculate



Fig. 5. (Left column) Correlation between total stem wood biomass and other biomass for the regional method; (Middle column) Correlation between merchantable stem
wood biomass and other biomass for the CRM method; (Right column) Correlation between the total stem wood biomass from the regional method and the merchantable
stem wood biomass from the CRM method. Correlation analysis is conducted at three study sites: Sagehen (top row), Tahoe (middle row), and Panther (bottom row).
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biomass for both stem bark and branches, independent from the
stem wood biomass calculation. As a result, the regional method
introduces more variability in its woody AGB estimates when it
sums the biomass from individual components; nevertheless, for
CRM, woody AGB is highly dependent on the merchantable stem
biomass. As shown in Fig. 5, the correlation between total stem
wood biomass (left column, x-axis) and other biomass (left column,
y-axis) for the regional method varies from 0.683 to 0.915 among
the three sites. However, the correlation coefficients between mer-
chantable stem wood biomass (middle column, x-axis) and other
biomass (middle column, y-axis) for CRM are much higher and
all greater than 0.96. All these, combining with the fact that the
regional total stem wood biomass and CRM merchantable stem
wood biomass has almost 1:1 relationship (right column), can
explain why CRM has the best fit for the lidar-based biomass
models.

The impacts of allometry on lidar model performance vary with
sites and are substantial sometimes (Table 4). At Panther, different
allometric methods have relatively small differences in fitting
statistics. At Sagehen, the model fitting statistics from different
allometric methods have larger yet moderate difference.
However, at Tahoe, the difference in model fitting statistics from
the three allometric methods is striking: for instance, the R2 is only
0.41–0.57 for the Jenkins method while it is as high as 0.77–0.92
for CRM. Since Jenkins has DBH as the only predictor while lidar
mainly carries height information, the poor performance from
Jenkins at this site could be related to the loose relationship
between DBH and height there. This is confirmed by the results
that, when a simple power model was used to fit individual tree
height based on DBH, the R2 is only 0.6 at Saghen, in contrast to
0.82 at the other two sites (Fig. 6).
4.5. Need for characterizing allometric model errors

Characterizing the AGB prediction errors have become one of
the central topics in remote sensing of forest biomass and C. A rig-
orous assessment of the remotely sensed AGB prediction errors
should consider errors in the whole process of biomass estimation,
including errors in field measurements, allometry, remote sensing
data (e.g., imperfect geometric and atmospheric corrections), and
remote sensing model errors. Chen et al. (2015) proposed a new
framework of characterizing AGB predicting errors by comprehen-
sively considering these different error sources and propagating
the errors from trees to field plots and finally to pixel levels for a
tropical forest in Ghana. It was found that the AGB prediction
errors are dominated by the errors from allometric models and
remote sensing models.

The error statistics reported in this study, RMSE and relative
RMSE, are to characterize the remote sensing model errors only,
assuming that the allometric models are free of errors. This is an
unrealistic but widely used assumption in the literature.
However, without considering other errors, especially the allomet-
ric model errors, it is hard to gain a complete understanding of the
whole AGB prediction errors. For example, in this study, CRM pro-
duced the lowest lidar-AGB model errors. Nevertheless, it is still
unclear whether CRM is the best allometric method for biomass
estimation. This is because, if the allometric model used to esti-
mate tree biomass has large errors, the errors of the
remotely-sensed AGB estimates could also be large, even in the
case that the remote sensing biomass model has small errors.

The characterization of allometric model errors requires
destructively measured AGB of individual trees (Clark and
Kellner, 2012). Unfortunately, the destructively measured tree



Fig. 6. Relationship between individual tree DBH and height at the three study sites (Sagehen, Tahoe, and Panther). The data at each site are fitted using a simple power model
(thick line) with the coefficient of determination (R2) labelled.

Table 4
Cross-validation fitting statistics of lidar-biomass models based on different allometric methods (Jenkins, regional, and CRM) and different statistical methods (f(Hqm): Eq. (6);
f(Hm): Eq. (7); Li08: Eq. (8); SVR: support vector regression; RF: random forest).

R2 RMSE (Mg/ha) Relative RMSE (%)

Jenkins Regional CRM Jenkins Regional CRM Jenkins Regional CRM

Sagehen
f(Hqm) 0.66 0.75 0.77 97.6 76.8 56.0 35.2% 34.2% 30.0%
f(Hm) 0.53 0.58 0.62 115.2 98.6 71.4 41.6% 43.9% 38.2%
Li08 0.69 0.78 0.78 93.6 71.5 54.4 33.8% 31.9% 29.1%
SVR 0.65 0.76 0.75 98.8 75.5 58.1 35.7% 33.7% 31.1%
RF 0.49 0.66 0.62 119.8 88.6 72.1 43.2% 39.5% 38.6%

Tahoe
f(Hqm) 0.51 0.63 0.92 75.1 58.3 23.6 35.8% 36.0% 15.7%
f(Hm) 0.54 0.64 0.91 72.6 57.5 24.1 34.6% 35.6% 16.1%
Li08 0.48 0.60 0.89 77.1 60.5 27.5 36.7% 37.4% 18.4%
SVR 0.57 0.66 0.91 70.4 55.8 24.5 33.5% 34.5% 16.4%
RF 0.41 0.56 0.77 82.2 63.5 39.0 39.1% 39.2% 26.0%

Panther
i(Hqm) 0.80 0.83 0.85 90.8 82.8 87.2 29.0% 27.4% 26.2%
f(Hm) 0.79 0.82 0.84 92.9 85.9 89.9 29.7% 28.5% 27.0%
Li08 0.80 0.84 0.85 89.6 81.8 86.5 28.6% 27.1% 26.0%
SVR 0.81 0.84 0.85 87.2 81.4 86.5 27.9% 27.0% 26.0%
RF 0.78 0.78 0.79 94.9 95.6 104.3 30.3% 31.7% 31.3%

Average 0.63 0.72 0.81 90.5 75.6 60.3 34.3% 33.8% 26.4%
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AGB data that were used to develop those published allometric
models are usually inaccessible to users. The error information
(e.g., RMSE) of allometric models, especially those developed tens
of years ago, was not necessarily reported in the literature either.
This is particularly the case for the species-level allometric models
of the regional method. Among the three allometric methods
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investigated in this study, the Jenkins method is the only one that
has reported the allometric model errors (Jenkins et al., 2004).
However, their allometric model RMSEs were calculated based on
‘‘pseudodata’’ generated from published equations instead of real
tree AGB measurements, which causes an underestimation of the
true allometric model errors (Chen et al., 2015).

Compiling and collecting measurements of tree AGB across
large spatial scales are a mammoth undertaking, so a national
database of tree AGB measurements for species in the U.S. does
not exist yet. Nevertheless, for quantifying national scale AGB
and its uncertainty in a creditable manner, such works need to
be done in the future. Chave et al. (2014) recently developed a
pan-tropical tree AGB database, based on which the errors related
to allometric model can be thoroughly investigated and the errors
related to remote sensing AGB prediction can be well characterized
(Chen et al., 2015). Similar efforts should be among the top
research priorities of the U.S. and other nations to estimate and
map AGB at the large spatial scale.
5. Conclusions

Allometry plays a fundamental role in biomass estimation and
remotely sensed biomass mapping. CRM, a national-scale allomet-
ric method in the U.S., has been recently proposed by the USDA-FS
FIA program for biomass and C stock inventory. Using data from
three conifer forests in the Pacific Northwest, this study a) con-
ducted an in-depth of analysis of CRM and two other
national-scale allometric methods (Jenkins and regional methods)
from which CRM is derived, and b) compared the use of the three
allometric methods for biomass estimation and lidar-based AGB
modeling. It was found that:

(1) In terms of biomass estimation, the difference of woody AGB
estimates between CRM and the Jenkins method is
attributed to their merchantable stem wood biomass esti-
mate differences. The woody AGB estimates from CRM and
the regional method is closely related because they share
the approach of calculating stem wood biomass. The relative
magnitude of AGB estimates from the three allometric
methods varies, depending on species composition and tree
size distribution at each site.

(2) In terms of biomass modeling, CRM produced the lowest
errors for the lidar-based biomass models, while Jenkins
led to the largest lidar-biomass model errors. The poor lidar
biomass model performance from Jenkins is mainly related
to its exclusion of tree height in their biomass estimation.
The superior performance of CRM is largely attributed to
its simple way of calculating non-merchantable-stem bio-
mass. At a given site, the variation of lidar-based AGB model
errors across different allometric methods is driven by the
extent to which how closely tree DBH and height are
correlated.

The implications of this study are multifold. First, despite CRM
has the best lidar-AGB model fitting, it has deep roots in the sim-
plification of calculating non-merchantable-stem biomass and thus
has the concern of being just a mathematical artifact. A pressing
need exists to create a national database of tree AGB measure-
ments for evaluating the errors of CRM or other national allometric
methods and, eventually, even develop new allometric methods
that can estimate AGB consistently across the nation and
characterize errors rigorously. Second, since the use of different
allometric methods at a given site could cause substantial
variations in lidar-AGB model performance, the interpretation of
remotely-sensed biomass model performance should be always
put in the context of the allometric method used. For example, it
is inappropriate to directly compare the remote sensing AGB model
performance (e.g., R2) in Africa and the U.S. without considering
the differences in their allometric model errors.

The study also tested five different statistical methods (three
regression models and two machine learning methods) for AGB
modeling. RF was the worst method for almost every allometric
method at each of three study sites. This is in contrast to some pre-
vious studies such as Li et al. (2014) and Mascaro et al. (2014), who
reported superior results of using RF in temperate and tropical for-
ests. RF is essentially a tree-based approach and at each leaf node
the model prediction is an average of training data values within it,
which tends to underestimate high AGB areas and overestimate
low AGB areas. Such a problem is more obvious if cross-
validation is used for model assessment, in which the dynamic
range of AGB of the test data could be larger than the one of the
training data. So, it is not unexpected that RF had the largest errors
(RMSE) in this study. However, the three study sites here are all
conifer forests. More research is needed in the future to compare
different statistical models across different forest types.
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Appendix A

The derivation of woody AGB relationship between CRM and
Jenkins methods.

AGBcrm ¼BmStemWood;crmþBmStemBark;crmþBmStem;crm

�ðBstump;Jenkins=BmStem;JenkinsÞþBmStem;crm�ðBtopBranch;Jenkins=BmStem;JenkinsÞ
¼BmStem;crmþBmStem;crm�ðBstump;Jenkins=BmStem;JenkinsÞþBmStem;crm

�ðBtopBranch;Jenkins=BmStem;JenkinsÞ
¼ ðBmStem;JenkinsþBstump;JenkinsþBtopBranch;JenkinsÞ
�ðBmStem;crm=BmStem;JenkinsÞ
¼ ðBtotal;Jenkins�Bfoliage;JenkinsÞ�ðBmStem;crm=BmStem;JenkinsÞ
¼AGBJenkins�ðBmStem;crm=BmStem;JenkinsÞ
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