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Filtering is a crucial step in lidar data processing. The Edge-based Morphological

(EM) filtering method proposed by Chen et al. (2007, Photogrammetric

Engineering and Remote Sensing, 73, pp. 175–185) is fast and can be applied to

different land use and land cover types. However, it requires a large number of

parameters. It is challenging for average users to tune these parameters without a

good understanding of the algorithm. This study introduces a new method to

identify buildings so that the total number of parameters to be tuned is reduced

from 7 to 2. Even with fewer parameters being tuned, it was found that the

average filtering error slightly decreased compared to the original algorithm

when tested with the benchmark dataset provided by the International Society

for Photogrammetry and Remote Sensing (ISPRS) Commission III/WG3. This is

a useful contribution to the original algorithm given that it can achieve increased

accuracy in a simpler way for users.

1. Introduction

The past decade has witnessed rapid developments in lidar (Light Detection and

Ranging) and its applications for terrain mapping, forest inventory, urban mapping,

geomorphology, hydrology, etc. (Chen 2007). The performance of the lidar

hardware (e.g. the pulse repetition rate) has significantly increased and nowadays

lidar data can be acquired for a much lower cost. However, great challenges remain

in designing efficient algorithms for lidar data processing and information

extraction to make this technology more widely used (Chen 2007).

Filtering (i.e. extraction of ground points from lidar point cloud) is probably the

most important step for lidar data processing. It plays a key role in DTM (Digital

Terrain Model) generation and object height information extraction. The

commercial and academic practitioners try to keep their filtering algorithms

proprietary (Sithole and Vosselman 2004), although some recent studies have

started to report their algorithms in more detail (Shan and Sampath 2005, Chen et

al. 2007, Evans and Hudak 2007, Kobler et al. 2007, Zheng et al. 2007). Ideally, a

good filtering algorithm should satisfy at least three criteria: (1) fast—to process

enormous amounts of lidar data; (2) general—to be applied over both urban and

vegetated areas; and (3) automatic—requiring little user intervention.

Chen et al. (2007) proposed an Edge-based Morphological (EM) filtering method.

This algorithm is fast because the computation is based on raster data structure. It
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can also be used over both forested and urban areas. Nevertheless, a total of seven

parameters have to be specified by users. Tuning so many parameters is a serious

problem given the sheer volume of lidar data. The objective of this Letter is to revisit

this method and introduce a more automatic one.

2. Method

The EM method involves first removing the vegetation and objects smaller than dmin

using a morphological opening with a circular structural element, and then detecting

larger buildings using morphological openings with progressively increasing

neighbourhood window sizes (see Chen et al. 2007 for details about other aspects

such as rasterization and outlier detection). Between any consecutive openings, two

opened images are subtracted to produce a height difference image diff. This image

is then thresholded to create a binary image that consists of individual cut areas,

which are either building or terrain bumps ideally. Theoretically, a cut area mj can

be classified into buildings or terrain bumps by applying a threshold to the height

difference along its edge. This is based on the fact that buildings have abrupt

elevation changes along their edges while terrain elevation changes smoothly.

The above criteria work well if a cut area mj corresponds to either a building or a

terrain bump exclusively. However, in practice the situation is more complicated.

For example, a patch of building(s) can be contaminated by their surrounding

terrain (as shown in figure 6 in Chen et al. 2007), which means that the edge

corresponds to a mixture of building and terrain pixels. Chen et al. (2007) tried to

solve this problem by identifying buildings using a set of heuristic rules, for which

five parameters have to be specified by trial and error.

In the new algorithm, a cut area image is first produced by applying a new

threshold hcut of 2 m instead of 1 m over the height difference image diff. Such a

higher threshold can make the cut areas less contaminated by surrounding terrain.

Figure 1(a) and (b) show examples of the edges and their height difference values

{diff(mj,b)} for a building and a terrain bump area, respectively. The edge pixels are

found by calculating the difference between an area from its morphologically eroded

area. The structural element for erosion is a ‘disk’ with a radius of 1. By examining

the characteristics of {diff(mj,b)}, the building and terrain bump can be distinguished

at least by means as follows.

First, since terrain usually changes its elevation gradually, the diff(mj,b) of some

pixels must be only slightly greater than hcut, depending on the slope at those edge

pixels. If we assume that the minimum slope along the edge of a terrain cut area is

less than a threshold smin, some edge pixels for a terrain area should have diff(mj,b)

values less than hcut + smin*c, where c is the cell size. For example, if we let smin be

15% and cell size c be 1, the minimum diff(mj,b) for a terrain area will be less than

2.15. On the contrary, for buildings, the minimum diff(mj,b) is usually greater than

hcut + smin*c due to the abrupt elevation change. In figure 1, the minimum diff(mj,b)

values for the building and terrain areas are 2.84 m and 2.02 m, respectively.

Second, buildings and terrain show different patterns in the distribution of

{diff(mj,b)}. For a building area, the edge pixels usually have large diff(mj,b) values

and possibly with a minority of small values if these are contaminated by the

surrounding terrain. Therefore, the distribution of {diff(mj,b)} is usually skewed to

the left so the skewness is less than zero. In contrast, the skewness of {diff(mj,b)} for

a terrain area is greater than zero. The skewness of {diff(mj,b)} for the building and

terrain areas in figure 1 is 20.39 and 2.01, respectively.
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Third, if all buildings over an area are higher than hmin,b, then we can simply

assume that most of the edge pixels for a building have {diff(mj,b)} greater than

hmin,b. Based on that, if the percentage of the edge pixels with diff(mj,b) greater than

hmin,b is more than 50%, an area can be classified as a building; otherwise, it will be

classified as a terrain area. If we set hmin,b to be 3 m, 98% and 32% of the edge pixels

Figure 1. Edge pixels of a building and a terrain bump and their characteristics. (a) and (b)
are the edge pixels and the height difference {diff(mj,b)} between two consecutive
morphological openings for a building and a terrain area, respectively. (c) and (d) are the
{diff(mj,b)} sorted from low to high for the building and terrain areas, respectively. The
horizontal dashed lines indicate the value of hmin,b, which is set to be 3 m. (e) and (f) are the
corresponding histograms of {diff(mj,b)}.
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for the building and terrain in figure 1 have diff(mj,b) values greater than hmin,b,

respectively.

In the current algorithm, if a cut area mj satisfies any of the above three conditions

(condition 1: min({diff(mj,b)}).hcut + smin*c, called the minimum height condition

hereinafter; condition 2: skewness({diff(mj,b)}),0, called the skewness condition

hereinafter; and condition 3: #({diff(mj,b)}.hmin,b)/#(all edge pixels).50%, called

the percentage condition hereinafter), it is classified as a building. Based on common

knowledge of building height and terrain slope, hcut, smin, and hmin,b are fixed to 2 m,

15%, and 3 m, respectively.

3. Experiments and results

3.1 Data

As in Chen et al. (2007), the International Society of Photogrammetry and Remote

Sensing (ISPRS) Commission III/WG3 dataset was used to evaluate the filtering

accuracy of the algorithm. There are four urban sites and three rural sites, covering

different land use types such as buildings, vegetation, railroads, bridges. The laser

data have point spacing of 1 m to 1.5 m for the urban sites and 2 m to 3.5 m for the

rural sites. Fifteen reference samples were used to test the filtering accuracy (Sithole

and Vosselman 2004).

3.2 Results

Figure 2 shows the building masks and relevant DEMs produced with individual

conditions and the combined condition for an urban site. A comparison with the

Digital Surface Models (DSMs) indicates that none of the individual conditions

can completely remove the buildings in the DEM, which means that all of them

can produce commission errors for identifying terrain returns in filtering. Visual

inspection indicates that the percentage condition leads to the smallest

commission error for this example. However, it might also have the largest

omission error. For example, patches A and B in figure 2(f) are mainly terrain,

which do not appear in the building masks produced with the minimum height or

skewness condition. When the three conditions are combined, almost all buildings

are identified.

Table 1 lists the total errors of filtering for the 15 reference samples. For each site,

only two parameters dmin and dmax are tuned and their values are the same as the

ones listed in table 2 of Chen et al. (2007). Being consistent with the observations in

figure 2, the percentage condition produces the lowest filtering error and the

skewness condition has the highest error. When the three conditions are combined, a

mean error of 5.55% is obtained, smaller than the mean error of any individual

condition. The error is also smaller than the mean error of 7.19% for the original

algorithm in Chen et al. (2007).

4. Conclusions

In this Letter, an improved version of the Edge-based Morphological (EM) method

(Chen et al. 2007) is introduced. Three new conditions are proposed to distinguish

buildings from terrain bumps so that users need to tune only two instead of seven

parameters. The total errors of filtering slightly decreased on average when tested

with the ISPRS benchmark dataset. Therefore, this algorithm can achieve increased

1072 Q. Chen



Figure 2. Building detection with different conditions. (a) The digital surface models of the
urban site of Stuttgart city centre (all buildings and trees smaller than dmin have been
removed). (b), (d), (f), and (h) are the building masks extracted with the minimum height,
skewness, percentage conditions, and the three conditions combined, respectively. (c), (e), (g),
and (i) are the corresponding DEMs, respectively.
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accuracy in a simpler way for users, which is useful to alleviate the time-consuming

problem of lidar data filtering.
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Table 1. Comparison of total errors for all samples.

Samples
Chen et al.
(2007) (%)

Minimum
height

condition (%)
Skewness

condition (%)
Percentage

condition (%)

Three
conditions

combined (%)

1 (Sample 11) 13.92 13.15 14.23 13.01 12.85
2 (Sample 12) 3.61 4.89 5.91 4.90 4.89
3 (Sample 21) 2.28 2.42 2.42 2.42 2.42
4 (Sample 22) 3.61 5.57 7.26 6.72 5.72
5 (Sample 23) 9.05 10.54 22.16 11.05 10.68
6 (Sample 24) 3.61 8.16 10.46 8.24 8.16
7 (Sample 31) 1.27 8.14 13.68 4.43 4.15
8 (Sample 41) 34.03 5.64 8.73 5.90 5.90
9 (Sample 42) 2.20 5.31 5.68 3.52 4.44
10 (Sample 51) 2.24 2.20 2.23 2.20 2.20
11 (Sample 52) 11.52 5.59 5.82 6.07 6.05
12 (Sample 53) 13.09 8.20 8.08 9.67 8.74
13 (Sample 54) 2.91 3.58 3.55 3.58 3.58
14 (Sample 61) 2.01 1.34 1.29 2.36 1.66
15 (Sample 71) 3.04 3.13 2.93 1.84 1.79
Mean 7.19 5.86 7.63 5.73 5.55
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