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a b s t r a c t

Simple but realistic modeling of radiation transfer within heterogeneous canopy has been a

challenging research question for decades and is critical for predicting ecological processes

such as photosynthesis. The Markov model proposed by [Nilson, T., 1971. A theoretical

analysis of the frequency of gaps in plant stands. Agric. Meteorol. 8, 25–38] is theoretically

sound to meet this challenge. However, it has not been widely used because of the difficulty

of determining the clumping factor. We propose an analytical approach to calculate

clumping factors based on the average characteristics of vegetation distributed across a

landscape. In a savanna woodland in California, we simulate the photosynthesis of the

landscape in three different ways: (1) the crown envelope and location of each tree is

spatially explicitly specified, (2) the canopy is assumed to be horizontally homogeneous

within which leaves are randomly dispersed as a Poisson process, and (3) the canopy is

horizontally homogeneous but leaves are clumped and distributed with a Markov process.

We find that the Markov model can achieve much better performance than the Poisson

model by incorporating the crown-level clumping. The results indicate that our approach of

calculating clumping factors has applications in terrestrial ecosystem modeling, particu-

representation of ‘‘system heterogeneity’’ (e.g., savannas and wood-
larly where accurate

lands) is required.
# 2008 Elsevier B.V. All rights reserved.
1. Introduction

Savannas, inhabited by one-fifth of the world’s human

population, are one of the Earth’s most important hetero-

geneous terrestrial biomes (Ramankutty and Foley, 1999).

Since savannas are anticipated to be among the ecosystems

that are most sensitive to future land use and climate changes

(Bond et al., 2003; Sankaran et al., 2005), it is important to gain a
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mechanistic understanding of their vegetation–atmosphere

exchange. Processed-based ecological models are one

approach for achieving this understanding. However, model-

ing savanna ecosystems is very challenging because savannas

are typically characterized with sparsely distributed indivi-

dual trees, both horizontally and vertically heterogeneous.

Since solar radiation is a controlling driver of many

ecological processes, one of the major challenge is to model
inese Academy of Sciences, and Beijing Normal University.
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radiation interception realistically for heterogeneous land-

scapes like savannas. A three-dimensional individual-tree

based model can be used to characterize the canopy

morphology details as much as possible (Charles-Edwards

and Thorpe, 1976; Allen, 1974). However, at broad spatial

scales simpler models, which assume a homogeneous canopy

(such as big-leaf models), are preferred because of the

demanding computation and parameterization requirements

of individual-tree based models (Sinclair et al., 1976). When

the simpler models are used, it is essential to know the

answers to two key questions. First, when compared to an

individual-tree based model, what are the errors of radiation

modeling due to the simplification of canopies? Second, how

can we improve the simple models so that they can achieve

comparable performance to individual-tree based models?

For the first question, previous studies have investigated the

effects of canopy simplification on radiation interception for

heterogeneous canopies (Asrar et al., 1992; Jarvis and Leverenz,

1983; Norman and Welles, 1983; Andrieu and Sinoquet, 1993).

For example, Asrar et al. (1992) simulated canopies with

different leaf area index and canopy cover within a plot of

50 m by 50 m and compared the 1D and 3D models. They found

that the 1D approach results in an overestimation of both

canopy reflectivity and PAR absorptivity as compared to a 3D

calculation. The discrepancy is especially large at lower canopy

leaf area indices and generally decreases with increasing leaf

area. Their analysis indicated that the leaf area index of a

canopy is less of an instructive parameter than ground cover

and clump leaf area index for modeling radiation within these

canopies. Norman and Welles (1983) tested a three-dimensional

general array model in a crop canopy in and compared it with a

big-leaf model. They found that at a leaf area index of four, the

general ellipsoidal array model predicts the same direct beam

PAR intercepted as therandom model on a daily basis. However,

at leaf area indices of 0.5, 1.0, and 2.0 the random model

overestimates daily intercepted PAR by 25, 17, and 7%,

respectively. Another finding is that the sunfleck fraction is

most affected by clumping foliage at intermediate leaf area

indexes when adjacent rows are just beginning to approach

closure. Andrieu and Sinoquet (1993) compared a two-dimen-

sional model (one dimension in vertical direction, the other is

one horizontal direction) and a big-leaf model in predicting the

gap fractionofan artificial rowcanopy. Itwasfound that the big-

leaf model significantly underestimated the gap fraction and

overestimated the light interception.

To make 1D models to simulate comparable canopy optical

properties (such as canopy reflectance, transmittance, and

interception) asmore detailed 3Dmodels, previousresearchhas

used either used look-up table methods (Pinty et al., 2004) or

used non-Poisson models to characterize the non-randomness

of canopy. Two of such computationally efficient models exist:

the binomial model (Monteith, 1965; De Wit, 1965) and the

Markov model (Nilson, 1971). Baldocchi et al. (1985) used a

negative binomial distribution to describe the foliage clumping

and obtained an improved simulation of direct radiation within

canopy than the Poisson distribution. Baldocchi and Harley

(1995), to our best knowledge, first demonstrated the impor-

tance of clumping in modeling photosynthesis of natural

ecosystems by comparing computations with direct eddy flux

measurements of CO2 exchange. However, compared to the
binomial models, the Markov model is more general (Nilson,

1971) and widely used (Norman and Welles, 1983; Andrieu and

Sinoquet, 1993; Kucharik et al., 1999; Baldocchi et al., 1999; Chen

et al., 2005). For example, Jonckheere et al. (2006) compared

three light extinction models including Poisson, Markov, and

negative binomial models; they found that the Markov model

was shown to be an appropriate model for LAI inversion from

hemispherical photographs in a wide variety of virtual forest

stands. Another interesting research work in this field was done

by Nilson (1999), who proposed new formulas to calculate gap

fraction due to canopy clustering at different structural levels.

These formulas also consider the effects of different spatial

patterns of trees (including Poisson and binomial distribution)

and crown shape on gap fraction.

By incorporating the clumping factor, the Markov model

can generate the same light penetration probability P (or gap

fraction) or interception probability I as field measurements or

simulated results from complex three-dimensional radiation

transfer models.

P ¼ e�kVL (1)

I ¼ 1� e�kVL (2)

where L is the leaf area index, k is the extinction coefficient,

and V is the clumping factor. The key for applying this

approach is to calculate the clumping factor given a hetero-

geneous landscape. Some studies have attempted to find the

variables that affect clumping factors and proposed some

equations for quantifying clumping factors. For example, Nor-

man and Welles (1983) derived the clumping factor by assum-

ing that the Markov model can intercept the same amount of

radiation as the individual-tree model. They found that the

clumping factor varied with zenith angle and leaf area index.

Andrieu and Sinoquet (1993) derived the clumping factor with

a similar approach, however, using the constraint of the same

gap fraction. It was also found that the clumping factor

depends on zenith angle. Kucharik et al. (1999) calculated

clumping factors based on Monte Carlo simulation, but their

method is still heuristic and semi-empirical. Chen et al. (2005)

for the first time mapped the global-scale clumping index

using remotely sensed multi-angular POLDER data assisted

by a geometrical optical model. However, the clumping factors

are calculated indirectly from remotely sensed signals instead

of directly from the characteristics of landscape itself. So far,

we still lack a solid understanding on (1) what the determi-

nistic variables for clumping factors are, and (2) how the

clumping factors vary with these variables. With no doubt,

these questions can be better answered with an analytical

instead of empirical approach.

Note that if the Markov model can produce the same gap

fraction or interception probability as an individual-tree based

model, it also implies that it can produce the same sunlit leaf

area index Lsunlit. This is evident in the equation of calculating

Lsunlit:

Lsunlit ¼
1� e�kVL

k
(3)



Fig. 2 – Calculation of sunlit leaf area index for

heterogeneous landscapes. 1–5 are the index for

subvolumes. The long arrows represent the direction of

sunlight. h, w, and l are crown depth, crown width, and

tree spacing, respectively. a and b are the parameters used

to calculate top and low limits in Eqs. (10) and (11).
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In this study, we present an analytical approach to derive

clumping factors for heterogeneous canopies based on the

constraint that it can produce the same sunlit leaf area index.

We use sunlit leaf area index as a constraint because it can

help our derivation to intuitively link to physical meanings. In

our approach, the clumping factor is dependent on (i) tree

spacing to crown width ratio, (ii) crown depth to crown width

ratio, (iii) local leaf area index for canopy only, (iv) G-function

value, and (v) solar zenith angle.

To test this approach, we use a three-dimensional canopy

radiation and photosynthesis model called MAESTRA to

construct the canopy inhabiting a savanna woodland in

California in three different ways: (1) the shapes and locations

of individual trees are explicitly specified; within individual-

tree envelopes leaves are randomly distributed, (2) the canopy

is simplified as a box within which leaves are randomly

distributed, and (3) the canopy is simplified as a box within

which leaves are clumped; the clumping factors are calculated

with our approach. We then explore how photosynthesis

differs among the three scenarios. The modeled photosynth-

esis is also compared with the CO2 flux measured by an eddy-

covariance tower over the study site.
2. An analytical approach for calculating
clumping factors

2.1. Theoretical derivation

To facilitate the calculation of sunlit leaf area index, the

landscape is simplified as a mosaic of bare ground and trees,
Fig. 1 – The configuration of a heterogeneous landscape. (a

and b) are the planar and vertical views of the landscape.
where the trees are regularly distributed (Fig. 1a). All trees have

the same size and box shapes. The crown width, crown height,

and tree spacing are denoted as w, h and l, respectively (Fig. 1b).

For any elementary volume dv = dx dy dz within the crown,

the sunlit leaf area, dAsunlit, can be calculated by:

dAsunlit ¼ rPsunlitðx; y; zÞdx dy dz (5)

where r is the leaf area volume density in m2/m3, which is

assumed to be constant over the canopy, Psunlit(x, y, z) is the

sunlit leaf area probability within the elementary volume,

which can be written as:

Psunlitðx; y; zÞ ¼ e�rGðuÞsx;y;z (6)

where sx,y,z is the within-canopy distance of light penetrating

to the point (x,y,z) and G(u) is the mean projection of unit leaf

area along the sunlight direction u (Ross, 1981). By assuming a

turbid media within the envelope of each tree crown, the

sunlit leaf area of the tree, denoted as Asunlit, can be calculated

by integrating Eq. (5) over the tree volume V.

Asunlit ¼
Z Z Z

v2V

rPsunlit dv ¼ r

Z Z Z
v2V

e�rGðuÞsx;y;z dv (7)

For simplicity, let us assume that sunlight is parallel to one

side of the box; we also define a coordinate system as follows:

the origin is the upper corner that is closer to the sun, the x-

axis is parallel to the sunlight and positive along the sunlight

direction, the y-axis is perpendicular to the sunlight, and the z-

axis is positive downward (Fig. 2). Then, we know

Asunlit ¼ r

Z w

x¼0

Z w

y¼0

Z h

z¼0
e�rGðuÞsx;y;z dx dy dz

rw
Z w

x¼0

Z h

z¼0
e�rGðuÞsx;z dx dz

(8)

To calculate the integral in Eq. (8), we break the tree volume

V into subvolumes Vi (i is the index of subvolume and i = 1, . . .,
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n) as shown in Fig. 2. The sunlit leaf area of the tree is obtained

by integrating the sunlit leaf area for each subvolume

separately and then summing them up.

Asunlit ¼ rw
Xn

i¼1

Z w

x¼0

Z zi
t

z¼zi
b

e�rGðuÞsi
x;z dx dz (9)

The reason for doing this is that sx,z can be explicitly

expressed for each subvolume. For example, for V1 in Fig. 2, sx,z

is z/cos u; for V2, sx,z is x/sin u. More generally,

si
x;z ¼

z
cos u

�ði� 1Þl
2 sin u

; when i is odd

x
sin u

þði� 2Þw
2 sin u

; when i is even

8><
>: (10)

Also, zi
t and zi

b can be explicitly expressed as follows:

zi
t ¼

0; when i ¼ 1

min
x

sin u
þ i� 1

2
aþ i� 3

2
b;h

� �
; when i is odd and i�3

min
x

sin u
þ i� 2

2
aþ i� 2

2
b;h

� �
; when i is even

8>>>><
>>>>:

(11)

zi
b ¼

min
x

sin u
þ i� 1

2
aþ i� 1

2
b;h

� �
; when i is odd

min
x

sin u
þ i

2
aþ i� 2

2
b;h

� �
; when i is even

8>><
>>:

(12)

where a = l cot u, b = w cot u.

As shown in Fig. 1(a), the sunlit leaf area index Lsunlit over

the landscape can be calculated as:

Lsunlit ¼
Asunlit

ðwþ lÞ2
(13)

Combine Eqs. (9) and (13), we know that:

Lsunlit ¼
r=w

Pn
i¼1

Rw
x¼0

R zi
t

z¼zi
b

e�rGðuÞsi
x;z dx dz

ð1þ l=wÞ2
(14)

The total leaf area index L over the landscape is:

L ¼ rhw2

ðwþ lÞ2
¼ rh

ð1þ l=wÞ2
(15)

Substitute Eqs. (14) and (15) to (3), and we can calculate the

clumping factor. We call these equations the general equations

for calculating clumping factors. Based on these equations, we

know that the calculation of clumping factor requires six

parameters: (i) leaf area volume density r, (ii) crown depth h,

(iii) tree spacing l, (iv) crown width w, (v) solar zenith angle u,

and (vi) G-function value.

2.2. A normalized version of the equations

Next, we will develop another set of equations that all of the

tree dimensions are normalized with the crown width,
which are called the normalized equations for calculating

clumping factors. First, let us define new variables x0, z0, l0,

and h0 so that:

x ¼ wx0 (16)
z ¼ wz0 (17)
l ¼ wl0 (18)
h ¼ wh0 (19)

where l0 and h0 are the tree spacing to crown width ratio and

crown depth to crown width ratio, respectively.

Then, Eq. (14) becomes

Lsunlit ¼
rw
Pn

i¼1

R 1
x0¼0

R z0t i
z0¼z0

b
i e
�rGðuÞsi

x0 ;z0 dx0 dz0

ð1þ l0Þ2
; (20)

and

si
x0 ;z0 ¼

w
z0

cos u
�ði� 1Þl0

2 sin u

� �
; when i is odd

w
x0

sin u
þ i� 2

2 sin u

� �
; when i is even

8>><
>>:

(21)

We also know that the local leaf area index Llocal, which is

the leaf area index only for vegetated area, can be calculated as

follows:

Llocal ¼ rh (22)

Combine Eqs. (20)–(22), and we know that:

Lsunlit ¼
ðLlocal=h

0Þ
Pn

i¼1

R 1
x0¼0

R z0t i
z0¼z0

b
i e
�ðLlocal=h

0 ÞGðuÞs0
x0 ;z0 i dx0 dz0

ð1þ l0Þ2
(23)

where,

s0x0 ;z0 i ¼
z0

cos u
�ði� 1Þl0

2 sin u
; when i is odd

x0

sin u
þ i� 2

2 sin u
; when i is even

8><
>: (24)

z0ti¼

0; when i¼ 1

min
x0

sinu
þ i�1

2
a0 þ i�3

2
b0;h0

� �
; when i isoddand i> ¼ 3

min
x0

sinu
þ i�2

2
a0 þ i�2

2
b0;h0

� �
; when i iseven

8>>>><
>>>>:

(25)

z0bi ¼
min

x0

sin u
þ i� 1

2
a0 þ i� 1

2
b0;h0

� �
; when i is odd

min
x0

sin u
þ i

2
a0 þ i� 2

2
b0;h0

� �
; when i is even

8>><
>>:

; (26)

and a0 = l0cot u, b0 = cot u.



Table 1 – Base values and ranges for parameters used in
the general equations

Parameter Description Base value
(unit)

Range

h Crown depth 10 (m) (0–50)

l Tree spacing 2 (m) (0–50)

w Crown width 2 (m) (0–50)

r Leaf area volume density 0.2 (m2/m3) (0–1)

G G-function value 0.5 (0–1)

u Solar zenith angle 45 (8) (0–90)
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Combine Eqs. (15), (18), and (22), and we know that:

L ¼ Llocal

ð1þ l0Þ2
(27)

Eqs. (23) and (27) are mathematically the same as Eqs. (14)

and (15), respectively. However, now the input parameters for

calculating clumping factors become: (i) local leaf area index
Fig. 3 – Dependence of clumping factors on the inp
for the canopy Llocal, (ii) crown depth to crown width ratio h0,

(iii) tree spacing to crown width ratio l0, (iv) solar zenith angle u,

and (v) G-function value. The advantage of using this set of

equations is that, instead of using leaf area volume density,

Eqs. (23) and (27) are dependent on the local leaf area

index Llocal, which is a variable that is widely used (Sellers

et al., 1996) and more commonly measured in the field

than leaf area volume density (Gower et al., 1999; Jonckheere

et al., 2004).

2.3. Dependence of clumping factors on input parameters

2.3.1. The general equations
To investigate the dependence of clumping factors on the

input variables in the general equations, we set up a set of base

values and their ranges for all of the input parameters (see

Table 1). Each time we change one of the parameters and fix

the others (Fig. 3). When tree spacing l is zero, the clumping

factor is 1 because the canopy is just like a big-leaf. As l

increases, the clumping factor drops quickly at the very
ut parameters based on the general equations.



Table 2 – Base values and ranges for parameters used in the normalized equations

Parameter Description Base value (unit) Range

h0 Crown depth to crown width ratio 5 (0–25)

l0 Tree spacing to crown width ratio 1 (0–25)

Llocal Local leaf area index for canopy 2 (m2/m2) (0–10)

G G-function value 0.5 (0–1)

u Solar zenith angle 45 (8) (0–90)

Fig. 4 – Dependence of clumping factors on the input parameters based on the normalized equations.

a g r i c u l t u r a l a n d f o r e s t m e t e o r o l o g y 1 4 8 ( 2 0 0 8 ) 1 0 0 5 – 1 0 2 01010



Fig. 4. (Continued).

Fig. 5 – Representation of the canopy in MAESTRA.

Positions and dimensions of each crown are specified.

Grid volumes within the target crown are used for crown

photosynthesis calculations (from Medlyn, 2004).
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beginning, followed by an increase and then a decrease again;

after certain spacing (>20 m), clumping factors become stable

(Fig. 3a). The clumping factor decreases quickly from 1 to

smaller values as crown width w increases from 0 to some

small value, followed by a steady increase of clumping factor

thereafter. The steady increase is consistent with the fact that

the canopy looks like a big-leaf as the crown width w increases

to a very large value given a small tree spacing (2 m in this

case) (Fig. 3b). The clumping factor decreases with crown

depth h, leaf area volume density r, and G-function value

(Fig. 3c–e). When r is small, the clumping factor is close to 1.

The clumping factor has no monotonic relationship with solar

zenith angle. In Fig. 3(f), the clumping factor first increases

with solar zenith angle, reaches a maximum around 108, and

then decreases to 0 when the solar zenith angle is 908. This is

interesting because it implies that this particular canopy looks

mostly random when the solar zenith angle is some value

between 0 and 908.

2.3.2. The normalized equations
The base values and ranges of the parameters in the normalized

equations (see Table 2) are the corresponding values in Table 1.

For example, the base value for local leaf area index is 2 m2/m2

according to Eq. (22). The relationship between clumping

factors and tree spacing to crown width ratio (Fig. 4a) has the

same pattern as the one between clumping factors and tree

spacing (Fig. 3a). It is not surprising that clumping factors have

the same relationships with G-functions (Figs. 3e and 4i) and

solar zenith angle (Figs. 3f and 4j). Due to the close relationship

between leaf area volume density and local leaf area index, the

relationship between clumping factors and local leaf area

index (Fig. 4h) is the same as the one between clumping factors

and leaf area volume density (Fig. 3d). However, the relation-

ship between clumping factors and crown depth to crown

width ratio (Fig. 4c) shows much difference when compared to

the one between clumping factors and crown depth (Fig. 3c).

This is because changing the crown depth to crown width ratio

h0 essentially changes both crown depth and leaf area volume

density. Given the same local leaf area index, the increase of h0

implies the decrease of leaf area volume density, which means

clumping factors will increase (see Fig. 3d). Also, we know the

increase of crown depth causes clumping factors to decrease

(Fig. 3c). These two opposite trends make clumping factors

insensitive to the variations of crown depth to crown width

ratio after a certain value. The shape of the curve in Fig. 4c) is
very similar to some classical variograms (Chen and Gong,

2004). Four additional curves are derived by changing the base

values of crown depth to crown width ratio c (Fig. 4d), the local

leaf area index (Fig. 4e), the G-function value (Fig. 4f), and the

solar zenith angle (Fig. 4g), it seems that they all have the

variogram-like patterns.

Our analytical approach provides a powerful tool to

calculate clumping factors given the input parameters and

explore the relationships between them. Also, our approach

can be used to test the results presented in previous literature.

For example, Asrar et al. (1992) concluded that local leaf area

index is a very useful parameter for modeling radiation for

heterogeneous landscapes. Our results confirm such a con-

clusion. Moreover, our analysis indicates that other para-

meters are important too. For instance, Fig. 4(a and b) have the

same local leaf area index but different crown depth to crown

width ratio h0, and the relationship between clumping factors

and tree spacing to crown width ratio l0 has different patterns.
3. The three-dimensional canopy radiation
and photosynthesis model—MAESTRA

We choose an individual-tree based model called MAESTRA

(Medlyn, 2004) to test our approach and compare different

canopy parameterization and radiative transfer schemes. In

the past three decades, a number of spatially explicit 3D

models have been developed to simulate radiation and

ecological processes for heterogeneous canopies including



Fig. 6 – Individual trees map for 200 m by 200 m around the

tower. The square dot indicates the location of the tower.
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crops (Allen, 1974; Myneni et al., 1986a,b), orchards (Charles-

Edwards and Thorpe, 1976), and forests (Wang and Jarvis, 1990;

Asrar et al., 1992; Kucharik et al., 1999; Mariscal et al., 2004).

The most distinguishing feature of MAESTRA is its flexibility of

representing canopy with diverse types of discrete geometric

envelopes (like cone, box, ellipsoid, etc.) (Fig. 5), which makes

it ideal to explore the interactions between canopy structure

and processes in our study.

MAESTRA is a model updated and renamed from MAESTRO

(Wang and Jarvis, 1990). It incorporates the three-dimensional

radiative transfer model of Norman and Welles (1983) for

direct light transfer and the methods of Norman and Jarvis

(1975) and Norman (1979) for diffuse light transfer. In

MAESTRA, the net CO2 assimilation rate An is calculated

using Farquhar’s model (Farquhar et al., 1980):

An ¼minfAv;Ajg � Rd; (28)

Av ¼ Vc max
ci � G �

ci þ Kcð1þ oi=KoÞ
; (29)

Aj ¼
J
4

ci � G �

ci þ 2G �
; (30)

where Av and Aj are the assimilation rate limited by Rubisco

activity and electron transport (ribulose-1,5-bisphosphate,

RuBP, regeneration), respectively, and Rd is the day respiration

(mitochondrial respiration under illumination condition),

which is the respiration from processes other than photore-

spiration, Vc max is the maximum catalytic activity of Rubisco

in the presence of saturating levels of RuBP and CO2, ci and oi
are the CO2 and oxygen concentrations in the intercellular

space, respectively, G* is the CO2 compensation point in the

absence of day respiration and is equal to 0.5oi/t (t is the

Rubisco specificity factor); Kc and Ko are Michaelis–Menten

coefficients for CO2 and O2, respectively, and J is the potential

rate of electron transport for a given incident photosyntheti-

cally active photon flux density I.

We calculate the potential rate of electron transport J in

Eq. (30) using the following equation:

J ¼ aIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðaI=JmaxÞ2

q ; (31)

where Jmax is the maximum potential rate of electron trans-

port, a is the quantum yield (mol electron per mol photon).

The Ball–Berry stomatal conductance model (Ball et al.,

1987; Collatz et al., 1992) is coupled with the photosynthesis

model and leaf energy balance model to solve the net

assimilation, stomatal conductance, and intercellular CO2 mol

fraction ci, iteratively.

gsc ¼ a0 þ
a1Anhs

cs
(32)

An ¼ gscðcs � ciÞ ¼ gbcðca � csÞ; (33)
where gsc and gbc are the stomatal and boundary layer con-

ductances for CO2, cs and ca are the CO2 concentrations at the

leaf surface and in the free air, respectively, hs is the relative

humidity at the leaf surface, a0 and a1 are the empirical

constants.
4. Modeling radiation and photosynthesis of a
savanna ecosystem

4.1. Study site

The study site is an open blue oak (Quercus douglasii) savanna

woodland, located near Ione, California (latitude: 38.260N,

longitude: 120.570W). The site is also part of the AmeriFlux

network of eddy covariance field sites. The landscape is

characterized by flat terrain (with an average slope of 1.58)

with a scattered, clumped distribution of blue oaks (Quercus

douglasii) and a minority of grey pines (Pinus sabiniana) over a

continuous layer of Mediterranean annual grasses. The mean

annual air temperature of the region is 16.6 8C. The mean

annual precipitation is about 559 mm per year (based on the

data from the cooperative weather station in Ione, CA that

operated between 1959 and 1977). Due to the Mediterranean

climate of the region, rainfall is concentrated between October

and May; essentially no rain occurs during the summer

months (from June to September). The soil is classified as an

Auburn very rocky silt loam (lithic haploxerepts). It contains

43% sand, 43% silt, and 13% clay. Its bulk density at surface

layer (0–30 cm) is around 1.61 � 0.10 g cm3 (n = 54) (Baldocchi

et al., 2004). There are two eddy covariance systems, one at

23 m and the other at 2 m above the ground, to measure the

CO2, water, energy fluxes simultaneously. A large number of

meteorological variables are also measured in the site,

including solar radiation, PAR, air temperature, relative
And the line indicates the railtrack.



Table 3 – Canopy attributes for an area of 200 m by 200 m
around the tower

Variable Value (unit)*

Tree number 576

Tree height 9.0 � 2.7 (m)

Trunk height 1.9 � 1.2 (m)

DBH 26 � 11 (cm)

Crown radius 2.9 � 1.4 (m)

Leaf area index 0.43 (m2/m2)

Canopy cover 0.47

* The values after the sign � are the standard deviation.
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humidity, volumetric soil moisture content, wind velocity, etc.

(Baldocchi et al., 2004). Our study area covers 200 m by 200 m

around the tower (Fig. 6).

4.2. Parameterization of the model

4.2.1. Canopy structure
We used airborne lidar data to map the individual-tree

locations, delineate their boundaries, and extract the indivi-

dual-tree structural information such as basal area, biomass,

and leaf area (Chen et al., 2006, 2007a,b; Chen, 2007). The

statistics of canopy structure attributes derived from lidar data

are listed in Table 3. As introduced earlier, we constructed the

canopy with three different settings: (1) the tree height, crown

radius, trunk height, and leaf area for all trees within 200 m by

200 m are specified with the information derived from lidar

data. All trees are assumed to have ellipsoidal shapes and

leaves are assumed to be randomly distributed within
Table 4 – Physiological and other parameters

Parameter Description

Photosynthesis and respiration

a Quantum yield

Kc Michaelis–Menten constant for CO2 (25 8C)

Ko Michaelis–Menten constant for O2 (25 8C)

t Rubisco specificity factor

Activation energy for temperature dependency

DHa (Kc)

DHa (Ko)

DHa (t)

DHa (Rd)

DHa (Vc max)

DHa (Jmax)

Deactivation energy for temperature dependency

DHd (Vc max)

DHd (Jmax)

Entropy term for temperature dependency

DS (Vc max)

DS (Jmax)

Stomatal conductance

a0 Intercept for Ball–Berry model

a1 Slope for Ball–Berry model

Other

Average leaf size

Note: XB 2003 (Xu and Baldocchi, 2003); B2001 (Bernacchi et al., 2001); H1
individual crowns, (2) the canopy is simplified as a 200 m by

200 m box. The mean tree height and trunk height are used to

specify the dimensions of the box. The leaf area of the box is

the total leaf area over the study area. Leaves are randomly

distributed within the box, and (3) the same as (2), except that

the leaves are clumped and the clumping factor is calculated

with our approach. We will refer the models with these three

different canopy structures as individual-tree model (MAES-

TRA), volume integrated Poisson model (called Poisson model

hereinafter), and volume integrated Markov model (called

Markov model hereinafter), respectively. To avoid the edge

effects, we replicate the canopy for 9 times and arrange them

as a 3 by 3 grid so that the landscape is 600 m by 600 m. The

simulation is only performed for 200 m by 200 m in the middle

of the landscape.

4.2.2. Spectral properties
We measured the leaf and soil reflectance with an ASD

Fieldspec FR spectroradiometer (Analytical Spectral Devices,

Boulder, CO), connected to a LI-COR integrating sphere (LI-

COR Inc., Lincoln, NE) for leaf reflectance measurements.

The ASD Fieldspec FR spectroradiometer records the

reflectance from 350 to 2500 nm in 1-nm increments. For

leaves, the reflectance is 0.08 and 0.52 for the PAR and

NIR wavelengths, respectively. For soil, the reflectance is 0.1

and 0.25 for the PAR and NIR wavelengths, respectively.

Other spectral properties are from the literature: the

transmissivity of leaves is 0.1 and 0.4 for the PAR and NIR

wavelengths; the soil reflectance and leaf transmissivity at

the thermal wavelength is 0.1 and 0.05, respectively

(Goudriaan, 1977).
Value (unit) Source

0.24 mol electron mol�1 photon XB2003

275 mmol mol�1 H1992

420 mmol mol�1 H1992

2321 H1992

79.43 kJ mol�1 B2001

36.38 kJ mol�1 B2001

�29.0 kJ mol�1 B2001

46.39 kJ mol�1 B2001

65.33 kJ mol�1 B2001

79.5 kJ mol�1 H1992

202.9 kJ mol�1 H1992

201.0 kJ mol�1 H1992

0.65 kJ K�1 mol�1 H1992

0.65 kJ K�1 mol�1 H1992

0.006 mol m�2 s�1 XB 2003

8.88 XB 2003

0.025 m

992 (Harley et al., 1992).
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4.2.3. Photosynthesis, respiration, and stomatal conductance
The photosynthetic capacity Vc max, maximum rate of electron

transport Jmax, and day respiration Rd of blue oak leaves were

measured during the growing season in 2001 by Xu and

Baldocchi (2003). They conducted gas exchange measure-

ments of CO2 and light response curves on blue oak leaves

biweekly throughout the growing season with a portable

photosynthesis system (LI-6400, Li-Cor, Lincoln, NE). It was

found that there are pronounced seasonal patterns of Vc max,

Jmax, and Rd; however, the slope for the Bell–Berry stomatal

model is quite stable. The values of Vc max, Jmax and Rd are

normalized to 25 8C according to Eqs. (8) and (9) of Harley et al.

(1992), and the temperature coefficients were from Bernacchi
Fig. 7 – Meteorological data
et al. (2001). A complete list of model parameters and the

derived physiological parameters are listed in Table 4.

4.3. Model testing

4.3.1. Radiation
A 20 m railtrack was built to measure the radiation under

canopy (Fig. 6). The railtrack is 1.2 m above ground and

supported by tripods. A robotic tramcar, equipped with

radiation sensors, moves back and forth from one end of

the railtrack to the other, which typically takes 24 min for a

round trip. There are three radiation sensors, including two

PAR sensors for measuring downward PAR and upward PAR,
measured in the site.



Fig. 8 – Comparison of hourly gap fraction between model

simulation and tram measurements for the period of 10:00

to 14:00 on September 23, 2006.
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respectively, and one net radiometer sensor. The radiation

measurement can be collected with 1 Hz frequency, but for

most of time only the half-hour average values were recorded

in a computer. Only on September 23, 2006 were measure-

ments with 1 Hz frequency also continuously recorded from

9:30 to 14:30. The data collected during this period are used to

test the model.

We run the three models (individual-tree, Poisson, and

Markov models) and simulate the hourly gap fraction from 10

to 14 o’clock at 21 nodes, which divide the railtrack into 20

one-meter segments. To match the spatial domain of the gap

fraction measurements by the tramcar, we only consider the

trees within a rectangular area where the trees are

potentially intercepting the direct sunlight to the tramcar.

Therefore, the size of the rectangle varies with the solar

zenith angle. Based on the field measurements, the gap

fraction is computed as the ratio of the downward PAR

measured by the sensor on the tramcar and the above-

canopy PAR measured by the sensor on the tall tower. Within

an hour, the robotic train has run for about 2.5 round trips.

The average values of gap fraction derived from the sensor

measurements within each hour is used to test the gap

fraction simulated by the models.

4.3.2. Photosynthesis
We calculated the net ecosystem carbon exchange (NEE) with

in-house software by processing the measurements into flux

densities, correcting the canopy CO2 storage, and filling in the

missing data (Ma et al., 2007). Ecosystem respiration was

estimated based on the statistical relationships between

nighttime NEE and soil temperature at 4 cm depth for

measurements with friction velocity greater than 0.1 m s�1.

Canopy photosynthesis is the difference between NEE and

ecosystem respiration.

Photosynthesis is modeled for the period between June 20

and July 10 in 2001 because (1) 2001 is the year when the leaf

physiological data (Vc max, Jmax, and Rd) were collected, (2) in

summer leaves were still active in photosynthesis while the

understory grass were dead so that trees were the only biota

for photosynthesis, and (3) there was a slight amount of

rainfall within this period so that there is larger variation of

fluxes (Fig. 7). This period also covers the longest continuous

block of data with minimum missing values in 2001.
Fig. 9 – Comparison of diurnal variation photosynthesis

between model simulation and eddy covariance

measurements for the period of June 20 to July 10, 2001.
5. Results and discussion

5.1. Comparison with field measurements

Fig. 8 shows the hourly gap fraction derived from field

measurements, individual-tree model, Poisson model, and

Markov model from 10:00 to 14:00 on September 23, 2006. The

values are 0.36, 0.35, 0.34, and 0.36 for tramcar measurements,

individual-tree model, Poisson model, and Markov model,

respectively. The gap fractions simulated by the models are

close to the tramcar measurements. The difference of gap

fraction among the three models is also small, especially for

the latter 3 h.

Fig. 9 shows the comparison between the photosynthesis

derived from the eddy covariance measurements and the ones
simulated with the three models. Note that now we are

considering all the trees within the 200 m by 200 m area, which

is the approximate footprint size of the eddy covariance flux

measurements. During the daytime, the mean photosynthesis

derived from the flux measurement was �2.04 �
3.49 mmol m�2 s�1. The photosynthesis from the individual-

tree model (filled circles with line) was �2.68 �
1.42 mmol m�2 s�1, which overestimate the flux measure-

ments by 31%. The Poisson and Markov model produced flux

density of�2.71(�1.46) and�2.70(�1.43) mmol m�2 s�1, respec-

tively. There is almost no difference between the fluxes

estimations from these three models. Compared to the

individual-tree based model, the mean square errors of both

the Poisson models and the Markov models are negligible

(about 0.005 mmol m�2 s�1).
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It seems that the three models have similar performance

in modeling radiation and photosynthesis for our study site,

which can be explained as follows: the simulation presented

earlier (Fig. 4h) shows that when the clumping factor has a

negative relationship with local leaf area index and is close
Fig. 10 – Comparison of the individual-tree based, the volume-i

models for modeling diurnal variation of canopy CO2 assimilati

local leaf area index.
to 1 when local leaf area index is small. The small local leaf

area of the whole study site, which is around 0.91 m2/m2 (see

Table 3), leads to clumping factors as large as 0.82–0.84 for

the period of simulating radiation and 0.82–0.88 for the

period of simulating photosynthesis. A large clumping factor
ntegrated Poisson, and the volume-integrated Markov

on (A). CC stands for canopy cover (CC) and LLAI stands for



Fig. 11 – The dependence of percent errors of the

integrated-volume Poisson model (solid lines) and the

integrated-volume Markov model (dashed lines) on

canopy cover and local LAI. The errors are calculated based

on the daytime assimilation fluxes assuming the flux

from the individual-tree model to be the truth.

Fig. 12 – The dependence of clumping factors on solar

zenith angle for canopies with different tree spacing to

crown width ratio (l0).
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implies that there is smaller difference among these three

models.

5.2. Model comparison for different canopies

Since there is almost no difference among these three models

for modeling photosynthesis, we try to examine how they

differ for different canopies, especially with different canopy

covers and leaf area index. The canopy cover of the site is 0.47.

First of all, we randomly remove a certain number of trees so

that the canopy cover varies from 0.4, 0.3, 0.2, to 0.1. For each

canopy cover, we multiplied the leaf areas of each tree with a

certain constant so that local LAI changes from 0.5, 1, 1.5, 2, 2.5,

3, 3.5, 4, to 4.5, where local LAI is the leaf area index for canopy

only. Therefore, there are a total of 36 different settings for the

landscape. For each setting, we run the individual-tree,

Poisson, and Markov models. The modeled canopy CO2

assimilation is shown in Fig. 10.

The results show that (1) the Markov model produces a

much better estimation of assimilation than the Poisson

model when compared to the individual-tree model, and (2)

the Poisson model constantly overestimates assimilation

when compared to the individual-tree model. The over-

estimation of CO2 assimilation by the Poisson model agrees

well with the findings from previous studies because the

Poisson model with no clumping will overestimate the light

interception (Norman and Welles, 1983; Asrar et al., 1992;

Andrieu and Sinoquet, 1993). It is very encouraging that the

Markov model has a close match with the individual-tree

model. The discrepancy between the Markov model and the

individual-tree model could be caused by a number of factors.

For example, when we derive the clumping factor, we assume

the trees are regularly distributed; however, the trees in a

landscape might be clumped or patched. Also, the trees are

assumed to be boxes instead of ellipsoids used in the

individual-tree model.

To investigate the effects of canopy cover and local leaf

area index on modeling errors, we calculate the root mean

square root errors of the daytime assimilation fluxes for both

the Poisson model and Markov model by assuming the

individual-tree model to be the truth. We also calculate the

percent error, which is the ratio between the mean square root

error and mean flux density of the individual-tree model. The

percent error increases with the local LAI for both the Poisson

and Markov models (Fig. 11).

When local LAI is as small as 0.5 m2/m2, the errors for both

models are very small. This means that there is not much

difference between the individual-tree model, Poisson, and

Markov for CO2 assimilation estimation if LAI is small. For the

Poisson model, the percent error could be as high as nearly

50% when local leaf area index is 4.5; however, the maximum

percent error for the Markov model is only about 10%.

The Poisson model and Markov model show different

patterns of errors depending on canopy cover. For the Poisson

model, the errors decrease with canopy cover. This is

reasonable because canopy is more like a big-leaf as canopy

cover increases. However, for the Markov model, the errors

increase with canopy cover. This can be explained by the

approach of calculating clumping factors. Larger canopy cover

implies smaller tree spacing. Our analysis in the next section
shows that the clumping factor is more sensitive to tree

spacing when trees are close to each other. So, a small error in

setting the tree spacing could cause a large variation of

clumping factor, therefore, a larger error in carbon flux

estimation.

5.3. Dependence of clumping factor on solar zenith angle

Although more theoretical insights are needed to examine the

direction dependence of clumping (Weiss et al., 2004), only a

few studies have addressed this issue (Andrieu and Sinoquet,

1993; Kucharik et al., 1999). Kucharik et al. (1999) used MVI

(Multiband Vegetation Imager) or TRACs (Tracing Radiation

and Architecture of Canopies) measurements to derive the

element clumping index that quantifies the effect of foliage



Fig. 13 – Comparison of gap fractions simulated by

MAESTRA with different crown shapes for trees around

the railtrack from 8 a.m. to 5 p.m. on September 23, 2006.

(Upper) box vs. half-ellipsoidal shapes; (lower) box vs.

cone shapes.
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clumping at scales larger than individual leaves or shoots. For

five forest species (jack pine, black spruce, aspen, oak, and

sugar maple), they found that the element clumping index

generally increases with solar zenith angle, which shows

different patterns as simulated in Fig. 4(j).

To examine the directional dependence of clumping in

more details, we calculated clumping factors by setting the

tree spacing to crown width ratio (l0) at five different values

(0.00001, 1, 10, 100, 1000) with the solar zenith angle u varying

from 0 to 898 (Fig. 12). A small l0 of 0.00001 corresponds to an

approximately continuous canopy, in which case the clump-

ing factors are supposed to be 1 for different solar zenith

angles. The results confirm such a pattern except when u is

greater than 848 (Fig. 12). When u is as large as 848 and l0 is as

small as 0.00001, a0 has a small value of about 10�6 and the

corresponding subvolume is very small too (Fig. 2). In such a

situation, the computation will produce numerical overflow

errors because we use a numerical method called Gaussian

quadrature to calculate the integral in Eq. (23).

However, for other four l0 values, even the smallest a0 is

0.0175, which is much larger than 10�6. Therefore, it is unlikely

that the decrease of V is also caused by the numerical errors

for these l0 values. When l0 is equal to 10 or 100, V increases

with u at the very beginning and then decreases at 63.48 or

87.18, respectively. These two angles correspond to the angles

at which neighboring trees are starting to block each other.

Sunlight interception by neighboring trees leads to smaller

sunlit leaf area index and thus smaller clumping factors.

When l0 is equal to 1000, trees do not shade each other even

when u is at the maximum angle of 898 so the clumping factor

keeps increasing. These different patterns indicate that

clumping factors increase with solar zenith angle only in

certain conditions.

Besides l0, our simulations (results not shown) indicate that

the angular dependence of clumping factors is also related to

the other three parameters (tree height to crown width ratio h0,

local leaf area index Llocal, and G-function value). Unlike the

empirical approach used in Kucharik et al. (1999), our

analytical approach allow us to examine the relationship

between clumping factors and solar zenith angle by just

changing the input parameters and without being limited by

the field data.

5.4. Further research

Despite of the usefulness of our method of calculating

clumping factors has been demonstrated by comparing the

results from the Markov model with tower CO2 flux measure-

ments and the results from more complex 3D individual-tree

based model, more research need to be done in the following

aspects.

First of all, the current approach of calculating clumping

factors is based on the assumption that each tree has a box

shape. Box shape might be a reasonable approximation of

deciduous trees. However, for other vegetation types such as

conifers, such an assumption might be questionable. As a

preliminary study to examine the effects of canopy shape, we

modeled the trees around the trailtrack with three different

shapes (half-ellipsoid, box, and cone) and compared the

simulated hourly gap fractions from 8 a.m. to 5 p.m. on
September 23, 2006 (Fig. 13). It was found that the mean gap

fractions are 0.456, 0.460, and 0.475 when the individual-tree

shapes are half-ellipsoid, box, and cone, respectively. The gap

fractions between box and half-ellipsoid shapes have only 1%

difference. The difference between box and cone shapes

increases to 3%. Therefore, it would be better if we can develop

analytical approach to calculate clumping factors for conifer

forest with cone shapes to further reduce the errors.

Second, we only consider the crown-level clumping, which

means at the landscape level the leaves are organized into

individual crown envelopes (or clumps) and within each

crown envelope leaves are randomly distributed. However,

clumping could exist at different levels including shoot,

branch, whorl, and crown levels (Bréda, 2003; Walter et al.,

2003). The clumping at the shoot, branch, and whorl levels
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could play an important role in the whole canopy clumping,

which is especially true for conifers (Chen, 1996). Although in a

very open deciduous savanna woodland, crown clumping

could be the dominant clumping factor due to the large open

space, more research need to be done in the future to consider

the within-crown clumping.

Third, the current approach is tested over a relatively small

area (200 m by 200 m). Further research is needed to explore on

how to calculate clumping factor for larger spatial scales,

especially in the scale of grid size for numerical weather

prediction (NWP) and general circulation models (GCM), which

is typically 10–100 km. At such a large spatial scale, the

landscape typically consists of large patches of different land

use and land cover types (water, soil, forest land, wheat fields,

etc.). How to calculate the clumping factor at different spatial

scale (especially the broad spatial scale) deserves more

research.

Last but not the least, the calculation of clumping factors

with the normalized equations requires a total of five input

parameters, two of which are challenging to obtain at the large

spatial scale: crown depth to crown width ratio and tree

spacing to crown width ratio. The computation of these

parameters requires high-spatial resolution remotely sensed

data. Airborne lidar data are particularly suitable for calculat-

ing the canopy height, tree size, and tree spacing. High-spatial

resolution imagery such as IKONOS and QuickBird can also

provide information about tree size and tree spacing. In the

future, it is necessary to investigate how to extract these

parameters with remotely sensed data at the large spatial

scales.
6. Conclusions

This study presents an analytical approach to calculate

clumping factors for heterogeneous landscapes and uses it

in the Markov model for modeling CO2 assimilation of canopy.

It was found that the CO2 assimilation estimated by the

Markov model can closely match the one by the individual-

tree based model for landscapes with different canopy cover

and local leaf area index. It is expected that our approach can

significantly improve our ability of predicting ecosystem

functions for heterogeneous landscapes from regional to

global scales. Research is needed to explore how to estimate

the input parameters at the broader spatial scales with remote

sensing technologies such as LIDAR and MISR (Multiangle

Imaging SpectroRadiometer).
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