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Automatic Variogram Parameter Extraction for
Textural Classification of the Panchromatic

IKONOS Imagery
Qi Chen and Peng Gong

Abstract—Range and sill are two important parameters of a
variogram. Their extraction usually involves experimental fitting
of variograms using models specified by the analyst and requires
much use of trial and error. The objective of this paper is to design
an algorithm for extracting the range and sill of a variogram au-
tomatically without fitting a model. Combined with the semivari-
ance at the lag of one pixel ( 1), the extracted range and sill were
applied to the textural classification of a panchromatic IKONOS
image over Xichang, Sichuan Province, China. Results show that
any of these three parameters can lead to the increase of the clas-
sification accuracy. When all three parameters were used with the
raw image data, the average kappa statistic for five window sizes
increased from 0.24 to 0.76, indicating promise of the range and sill
in texture classification.

Index Terms—IKONOS, range, sill, texture, variogram.

I. INTRODUCTION

S INCE THEIR introduction in remote sensing [1], [2],
geostatistical techniques have been widely applied in

mineral mapping with hyperspectral Airborne Visible/Infrared
Spectrometer (e.g., [3]), replacement of cloud pixels in Ad-
vanced Very High Resolution Radiometer (AVHRR) imagery
using kriging method (e.g., [4]), noise estimation (e.g., [5]),
design of optimal sampling strategies for remote sensing
investigation (e.g., [6] and [7]), and evaluation of the effects
of spatial resolution in certain applications (e.g., [8] and [9]).
A general discussion of such applications can be found in
[10]. Recently, much research has been undertaken to apply
variogram in texture classification (e.g., [11]–[20]).

Texture, which is an important property existing in remote
sensing imagery, refers to the variation of gray tones in a local
neighborhood [21]. There are three categories of methods
for textural classification: structural, spectral, and statistical
methods [22]–[24], among which statistical methods are
widely used. As a kind of second-order statistics, a variogram
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captures the covariance structure of a certain spatial process
[25]. Treating each pixel’s digital number (DN) as a realization
of the spatial process, an experimental variogram can be
calculated in each pixel’s neighborhood window. Either the
semivariance at each lag or variogram model parameters can
be used for textural classification. Correspondingly, algorithms
that use variograms for textural classification can be divided
into two categories [26], [27].

A. Using Semivariances Directly

A semivariogram textural classifier (STC) was proposed
to perform image classification based on the semivariogram
signature of remotely sensed data [12], [16], [17]. Carr and
Miranda [12] compared a classical gray-level coccurrence
method with a semivariogram using three kinds of optical
images—Systeme Pour l’Observation de la Terre (SPOT) High
Resolution Visible (HRV) near infrared; Landsat Thematic
Mapper (TM), red; and the Indian Remote Sensing Linear
Self-Scanning Sensor (LISS-II), green—and three kinds of
microwave images—Magellan, Venus, S-band; SIR-C, X-band;
and SIR-C, L-band—taken from national park, rainforest, and
urban surface cover types. They found that the semivariogram
texture measure provided higher classification accuracy for the
microwave images but lower accuracy for the optical images
than the cooccurrence method. The idea of using semivariance
as texture measure is intuitive and can be easily realized.
However, variogram parameters such as range, sill, and nugget,
could not be obtained.

B. Using Derived Parameters From Experimental Variogram

To automate the extraction of variogram parameters for re-
mote sensing image classification, Ramstein and Raffy [28] pro-
posed an approximate algorithm to calculate sill and range (de-
noted as and , respectively, in their paper)

mean

(1)

(2)

where is the semivariance at lag , is the gray-level
value at pixel location , and varies in the pixel neighborhood
window. Parameter in (2) is derived based on the assumption
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that the underlying variogram can be modeled using an expo-
nential variogram

(3)

There are several issues associated with this method: first,
if the underlying variogram models are different (e.g., power,
Gaussian models), the coefficients of the model fitted to the
local variogram may be misleading [29]. Second, even if this
assumption is relaxed, a real number may not be obtainable
in practice because there are many cases where is greater
than , leading to a meaningless value. This may
happen under a variety of situations. For example, if the un-
derlying variogram model is a pure nugget effect model, while
there exist outliers, then the semivariance at lag 1 can be greater
than the sill [e.g., Fig. 4(i)]. Moreover, can be
used as the estimate of sill only under very ideal conditions; the
window size must be large enough, while texture primitives in
the neighborhood window are relatively homogenous. Unfortu-
nately, as mentioned later in this analysis (Section III-D), this
requirement is usually contradictory and cannot always be sat-
isfied, possibly leading to greater than . Fig. 1 shows
that in a paddy field there are many pixel windows from which
a meaningful could not be obtained.

Herzfeld [13] and Herzfeld and Higginson [14] developed
another set of texture parameters from variograms for seafloor
classification with remote sensing imagery. Their idea was to
first smooth the experimental variogram using a Butterworth
filter and then obtain a set of parameters from it, including max-
imum variogram value, the lag to the first minimum after the
first maximum (mindist), significance of abyssal hills, which
represent slope and relative size , respectively. However,
their parameter vector was designed specifically for seafloor
classification and has not been tested over land. This method
does not obtain the range, nugget, and sill of a variogram model
either.

Common practice for extracting range, nugget, and sill is to
fit an experimental variogram using a conditionally negative
semidefinite (CNSD) model based on the weighted least square
approximation method [29]. The model must be specified by the
analyst, restricting the automation of parameter extraction.

Based on the above analysis, it is desirable to develop some
algorithms that could: 1) automatically extract the important
variogram parameters, i.e., range, sill, and nugget, and 2) be in-
dependent of the underlying variogram models. In this paper, we
propose a new algorithm, dubbed SEVDV (i.e., smoothing the
experimental variogram using difference of variance), to extract
range and sill of a variogram automatically, and evaluate the
utility of range and sill in the textural classification of panchro-
matic IKONOS imagery.

II. METHODS

A. Variogram

The gray-level value in an image can be treated as a regional-
ized variable, which is denoted as , a real-valued

Fig. 1. Raw and derived images of a paddy field. (a) Raw image. (b) 
 .
(c) Estimate of sill C . (d) Binary image with white area representing pixels
having 
 greater than C .

stochastic process defined over a domain of . The intrinsic
hypothesis of the regionalized variables is

(4)

Var where (5)

is called the semivariogram or variogram. It can be es-
timated by [30]

(6)

where is the number of pairs of observations made at lo-
cations and , separated by a vector .

The implication of (4) is that is spatially independent,
and its expectation does not vary in space. Equation (5) means
that the difference of two regionalized variables is independent
of specific spatial location and only related to the distance be-
tween them, which is a weak replacement of the second-order
stationarity

cov where (7)

When (7) holds, the intrinsic hypothesis and second-order sta-
tionarity can be related using

(8)

Remotely sensed data over large areas often incorporates a
nonstationary trend, resulting in violation of the assumptions.
The trend should be removed before calculating the variogram.
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Fig. 2. Smoothing experimental variogram using VSS.

B. SEVDV Algorithm

The SEVDV algorithm for extracting variogram model fol-
lows: 1) calculating the experimental variogram of a pixel neigh-
borhood; 2) smoothing the experimental variogram using a vari-
able span smoother (SEV); and 3) calculating the lagwise differ-
ence of variance-to-mean ratio (DVmr) between the two sides
of each lag, based upon which the range and sill are obtained.
The last two steps will be explained in detail.

1) Smoothing the Experimental Variogram (SEV): To
reduce the local variation the experimental variogram is
smoothed first. Smoothing is a kind of nonparametric curve
fitting technique. It is attractive because it is stable and able
to fit nonlinear data locally. One possible way to do this is to
fit the experimental variogram using a polynomial. However,
the choice of terms in a polynomial is not always obvious,
since the underlying variogram models could be quite different
[31]. Other widely used smoothing techniques include local
linear regression, cubic smoothing, kernel-type smoothing, and
variable span smoother [32]. After many tests, the variable
span smoother (VSS) proposed by Friedman [33] was chosen.
In an ideal variogram, the curvature of semivariance near the
range reaches maximum. A fixed span smoother will flatten
the curve at the range and make it difficult to obtain the range.
However, VSS can be optimal, since it shrinks its span near the
range using the leave-one-out cross validation technique. Also,
VSS is much faster than local weight linear regression, since it
does not involve matrix inverse operation [31]. Fig. 2 shows an
example of fitting an experimental variogram using VSS.

2) Rationale on Detecting Range and Sill Using
DVmr: Denote the lag of a variogram as , where,
with being the maximum lag distance of the variogram.
Also, denote the subset of semivariances from the smoothed
experimental variogram with lags less than and equal to as
SEV , and the subset with lags greater than as SEV , i.e.,

SEV

SEV where

Fig. 3. (a) Variogram and its series of DVMr, and (b) the corresponding
VMR and VMR .

Clearly, SEV includes points, while SEV has points.
The upper and lower limits of ensure that there are at least two
points in each subset. Varying from 2 to , a total of
pairs of SEV and SEV can be obtained.

Calculate the variance-to-mean ratio (VMR) for points in
SEV and SEV , respectively, and denote them as VMR
and VMR

VMR
VAR SEV
mean SEV

(9)

VMR
VAR SEV
mean SEV

(10)

Denote DVmr as the difference between SEV and SEV

DVmr VMR VMR where (11)

Fig. 3(a) is an example of a DVmr data series for a spherical
variogram. In this case, the lag distance where DVmr reaches
maximum is exactly the range of the variogram.

To explain this, we need to recall what variance-to-mean at-
tempts to quantify. VMR is an index widely used to quantify the
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Fig. 4. Various variogram model cases. (a) Linear model. (b) Power model. (c) Experimental variogram with upward semivariances after range and its SEV (solid
line). (d) Series of DVmr of (c). (e) Experimental variogram with downward semivariances after range and (solid line) its SEV. (f) Series of DVmr of (e). (g)
Period model where the dashed line indicates the maximum lag distance. (h) Bounded variogram model where the dashed line indicates the maximum lag distance.
(i) Experimental pure nugget effect model with SEV having a maximum value at the first lag. (j) Experimental pure nugget effect model with the variance-to-mean
ratio of SEV being 0.023. (k) Experimental variogram with downward semivariances after range and (solid line) its SEV. (l) Series of DVmr of (k).

dispersion of point patterns in spatial statistics. Generally, VMR
tends to be greater than one for clumped point pattern, equal to
one for random pattern, and less than one for uniform pattern.
Fig. 3(b) shows that when increases from 2 to , VMR
first increases and reaches maximum around the range, then de-
creases. This is because the points become more and more dis-
persed as increases before reaching the range, but when ap-
proaches the range and thereafter, they become more clustered
due to the inclusion of many points with similar values. How-
ever, VMR will decrease gradually and become stable after the
range, since the points become more similar as the lag increases.
Since VMR and VMR behave in opposite directions when
the lag is less than the range, the difference between VMR
and VMR (denoted as DVmr) will be exaggerated. As a result,
DVmr tends to reach maximum at the lag around the range. This
lag is used as an estimate of the range.

The range derived from this algorithm is not always exactly
equal to the assumed range, depending on the specific type of
variogram. This happens especially when the curvature around
the range is very small. For example, in the cases of Gaussian
or Exponential models, the DVmr usually reaches its maximum
before the assumed range. Therefore, for variograms having a
form similar to Gaussian and Exponential models, the range es-
timated with the proposed method can be regarded as an “effec-
tive range,” which is defined as the distance at which the vari-
ogram reaches 95% of its maximum.

3) Estimating the Range and Sill of a Sample Variogram: The
assumption of the above method is that the variogram model

reaches its sill asymptotically when approaches the range,
which can be guaranteed only for bounded variogram models
(e.g., spherical, exponential, circular, pentaspherical, and
Gaussian models). In practice, this assumption may be
violated in the following cases.

Case 1) There is no meaningful range or sill for the un-
bounded variograms, e.g., linear model [Fig. 4(a)]
or power model [Fig. 4(b)].

Case 2) There are upward or downward semivariances after
range for bounded variograms [Fig. 4(c) and (e)].
Numerous trials show that our algorithm can still de-
tect the range and sill effectively as long as the up-
ward/downward trend is not very obvious [Fig. 4(d)
and (f)]. Note that a periodic variogram model could
appear to have decreasing semivariances after range
due to small window size [Fig. 4(g)].

Case 3) Range cannot be found when the maximum
lag distance is less than the range due to small
window [Fig. 4(h)]. In this case, we cannot find
the range because there are continuously increasing
semivariances.

Case 4) No range and sill exist for the pure nugget effect
model.

For the cases above, we designed a series of nodes and de-
veloped a set of decision rules at each node to obtain range and
its corresponding sill. The maxima of SEV and DVmr are de-
noted as SEV and DVmr , respectively.
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Decision Node 1: SEV SEV or var SEV mean
SEV

This situation corresponds to Case 4), a pure nugget effect
model, where SEV appears at the first lag due to noise
[Fig. 4(i)] or variance-to-mean ratio of SEV is less than a
certain threshold [Fig. 4(j)]. Note that the idea of the index
of dispersion is used once again to quantify the uniformity of
the semivariances of a pure nugget effect model. Threshold
is determined empirically, and here we used 0.1. For the pure
nugget effect model, the range and sill are not meaningful.
However, for the purpose of classification, we define the range
as zero and the sill as the semivariance at the first lag of the
smoothed experimental variogram

ange (12)

ill SEV (13)

Decision Node 2: SEV SEV , and DVmr
DVmr

This implies that DVmr reaches its maximum in the lag range
of [2, ]. This occurs for most bounded variogram models,
especially for variograms described in Case 2). Consequently,
we can obtain the estimate of range directly through

ange (14)

ill SEV (15)

Decision Node 3: SEV SEV or SEV , and
DVmr DVmr

In this case, the range cannot be estimated, since DVmr is
always increasing. However, the SEV reaches maximum at a
certain lag in the middle. This usually occurs when there are
downward semivariances after the range [Fig. 4(k)], while the
VMmr does not reach its maximum around the range [Fig. 4(l)].
The lag where SEV is maximum is used as the estimate of range

ange (16)

Similarly, the estimate of sill is the semivariance at the esti-
mated range in the smoothed variogram.

Decision Node 4: SEV SEV , but SEV SEV ,
and DVmr DVmr

This occurs in all unbounded variogram models or when the
maximum lag distance is less than the true range, as for Cases 1)
and 3). There is a monotonic increase in both SEV and DVmr.
We arbitrarily use the maximum lag as the estimate of range

ange (17)

ill SEV (18)

To compare the SEVDV method and the one that uses semi-
variances directly, the semivariance at one pixel lag distance
( ) is also calculated. The advantage of retrieving also lies
in that it can be treated as the surrogate of the nugget, which is
another important parameter of a variogram.

III. EXPERIMENT AND ANALYSIS

A. Study Site and Data Description

Our study site is located in the valley of a mountainous area in
Xichang City, Sichuan Province of Western China, with an ele-
vation range of 1500–2500 m [34]. A panchromatic IKONOS
image of the study site, with 1-m spatial resolution, was ac-
quired in December 2000, covering an area of 137 km . The
IKONOS image has been georeferenced to Universal Trans-
verse Mercator projection based on the 1984 World Geodetic
System. A total of five image chips were selected, each repre-
senting a specific land cover type of this area: forest, muddy
land, paddy field, fish pond, and village [Fig. 5(a)]. Muddy land
refers to terrace areas subject to frequent floods which render
them barren and useless for agriculture. The land cover types
are coded from 1–5. The size of each image chip is 256 256
pixels. However, to circumvent edge effects, the calculation is
based on a larger image area depending on the window size. For
example, if the neighborhood window is 21 pixels long on its
side, the image chip used for calculation is 276 276 pixels.

Since per-pixel classification method is not efficient for spa-
tially heterogeneous land cover and land use classes in high spa-
tial resolution imagery [21], we hope to test the effectiveness of
the spatial information based on variogram in improving classi-
fication accuracy.

B. Handling Nonstationarity

In practice the stationarity assumption is often violated and it
is unrealistic to assume a constant mean. This is especially true
for natural scenes. When there is nonstationarity in the mean,
(4) can be modified as

(19)

where is called the drift. Theoretically, estimation of a drift
and the variogram of residuals cannot proceed simultaneously.
The common strategy is to remove the drift using either a poly-
nominial of finite order or a median polish method (MP) [35],
[36]. Chappell et al. [5] investigated the stationary assumptions
at five sites across a range of ecological environments in Africa
and found that a quadratic polynomial can remove the regional
trend quite well. Here, a quadratic polynominial regression is
used to fit the gray-level value in each neighborhood window

(20)

where is a vector consisting of (1, , , , , ),
with , being the coordinates of the pixels. is the vector
of coefficients, and is a zero-mean random variable repre-
senting fluctuations from this trend. The residual variogram is
calculated based on . Fig. 5(b) shows the detrended mosaic
image using (20).

C. Robust and Omnidirectional Variogram

To reduce the effect of outliers, the “robust” variogram pro-
posed by Cressie and Hawkins [36] is used instead of Math-
eron’s “classical” method. The robust estimator called mean
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Fig. 5. (a) Image mosaic of five sampled land cover classes (1: forest, 2: muddy
land, 3: paddy field, 4: fish pond, and 5: village) and (b) the detrended image
using second-order trend surface regression.

square-root pair difference (SRPD) is calculated over a given
lag by

SRPD (21)

Lark [15] compared the performance of SRPD and the corre-
sponding semivariance, and his results show that SRPD gives
better discrimination than semivariance for texture classifica-
tion.

The omnidirectional instead of directional variogram is used,
since in high spatial resolution imagery, the land cover unit (e.g.,
a house, pond, or paddy field) can be arranged in different ori-
entations in space. And we care about the types of land cover
rather than land covers with varying spatial orientations.

D. Choosing a Suitable Window Size

To make sure that the sample variogram converges, we need
to increase the window size. However, if the window size is too
large, homogeneity of texture can disappear and more compu-
tation will be involved [23], [28]. Window size is usually de-
termined empirically, depending on the size of texture primitive
in the image and the subject of interest. For example, Ramstein
[28] showed that using a size of 11 11 pixels yielded favor-
able results when classifying land cover in many cities in France
using a host of data types such as Landsat TM, AVHRR, and
near-infrared photography. Chica-Olmo and Abarca-Hernandez
[23] indicated that 7 7 was valid for most applications when
discriminating three quaternary deposits using Landsat 5 TM
imagery.

The SEVDV algorithm requires a larger window than usual,
since we attempt to estimate the effective range. Consequently,
window size should be greater than the ranges of most
land covers. Experimentally, one must increase the window
size to to obtain a statistically significant (for

), [28]. Bearing this in mind, the window
size should be at least three times the range. This requirement
cannot always be satisfied in practice, since there are usually
some land cover types with very large ranges. By experi-
menting, we found that the ranges of most land covers in our
image were between four and seven pixels. Consequently, we
selected window sizes of 13 13, 15 15, 17 17, 19 19,
and 21 21 pixels.

Fig. 6. Average of (a) range, (b) sill, and (c) 
 for five land cover classes with
different window sizes 13� 13, 15� 15, 17� 17, 19� 19, and 21� 21.

E. Analyzing Variogram Parameters

Range: Fig. 6(a) shows that the range of each land cover
depends on the window size. Preliminary analysis reveals: 1)
that in most cases, the range increases with the increment of
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TABLE I
MEAN VALUES OF RANGE, SILL, AND SEMIVARIANCE AT LAG 1 FOR FIVE WINDOW SIZES

window size. It can be found that the ranges at window sizes
15 15, 17 17, 19 19, and 21 21 increase by 20.9%,
26.5%, 50.6%, and 53.1%, respectively, when compared with
the range at 13 13 (Table I). This might be because the
variogram can capture texture with larger range when the
window size is larger. 2) The mean ranges of the five kinds of
land cover types are similar when the window size is 13 13.
Nevertheless, separability among classes increases gradually
as window size increases. This implies that increasing window
size can help to discriminate texture from range.

The spatial pattern of ranges [Fig. 7(a) and (b)] shows that
the range in a specific land cover is more homogeneous when
window size is larger. It seems that estimates of range become
more stable as window size increases. Large range occurs in
heterogeneous areas (e.g., the forest with large gaps) or transi-
tion zones between two distinct cover types. Bright areas appear
along the road in a paddy field and along the boundaries of fish
ponds. The reason is that the trend in the two different types
has not been completely removed by a second-order polyno-
mial surface model. Consequently, the semivariances increase
steadily and the estimate for range is large.

Sill: Similar to range, the mean sill for each land cover type
increases with the window size [Fig. 6(b)], resulting in a 33.5%
increment when varying window size from 13 13 to 21 21
(Table I). It is because more variability is usually induced when

the neighboring window is larger. The forest has much larger
sills than other cover types due to the strong contrast of gray
level between the peaks of trees and the shade sides of crowns.
When observing the spatial arrangement of sill in the same land
cover [Fig. 7(c) and (d)], the image tends to be smoother for
larger window size. From sill, the paddy field and village are
difficult to be discriminated.

: Unlike range and sill, does not vary a lot (with only
and fluctuation between window sizes 15 15

and 21 21) [Fig. 6(c)]. As mentioned earlier is a surro-
gate of nugget. Nugget is the unstructured variance in the var-
iogram, which arises partly from measurement error, or from
spatially dependent variation that occurs over distances much
smaller than the image pixel [5]. Therefore, should not be af-
fected much by window size. Like sill, larger window size will
smooth the results and make more homogeneous for each
class [Fig. 7(e) and (f)].

F. Classification Accuracy

Analyses indicate that the distributions of sill and are pos-
itively skewed for most classes except the forest class, which
violates the normality assumption for class probability distribu-
tion of each ground cover class if maximum-likelihood classi-
fier is used. To correct this, a logarithmic transformation (with
a base 10) is applied to sill and .



CHEN AND GONG: AUTOMATIC VARIOGRAM PARAMETER EXTRACTION 1113

Fig. 7. Images of (a), (b) range, (c), (d) sill, and (e), (f) 
 at two different
window sizes 17� 17 and 21� 21.

To examine the performance of classification using the var-
iogram parameters, the classification results are compared for
different combinations of digitial number (DN) and variogram
parameters for five window sizes including: 1) DN, 2) DN, ,
3) DN, range, 4) DN, sill, 5) DN, , range, 6) DN, , sill, 7)
DN, range, sill, and 8) DN, , range, and sill (Table II). The
Kappa statistic is used to assess classification accuracy against
known validation data.

All of the parameters can increase the classification accuracy.
Considering each parameter individually, we found that in-
creased the kappa statistic most significantly, with an average
increase of 0.39, compared with the one using DN only. As
the window size increases, the classification accuracy from DN
and exhibits a little fluctuation and reaches maximum when
window size is 19. This phenomenon is consistent with the pre-
vious observation that each class’s is most separate when the
window size is 17 or 19 (Fig. 6). Sill could also considerably en-
hance the accuracy, but its effects were not as strong as those of

. For sill, the kappa statistic does not change when the window
size increases from 17 to 21. Among the three parameters, range
contributes least to classification accuracy improvement. Never-
theless, range is very effective for discriminating fish pond from

TABLE II
KAPPA STATISTIC OF CLASSIFICATION RESULTS. THE UNDERLINE INDICATES

THE MAXIMUM KAPPA STATISTIC AMONG THE FIVE WINDOW SIZES

Fig. 8. Classification results using (a) DN, (b) DN and 
 (window size =

21 � 21 pixels), (c) DN and range (window size = 13 � 13 pixels), (d) DN
and range (window size = 21 � 21 pixels), (e) DN and sill (window size =

21� 21 pixels), and (f) DN, 
 and sill (window size = 21� 21 pixels).

village in this image [Fig. 8(c)]. And its discrimination ability
increases steadily when the window size increases from 13 to
21. In Fig. 8(c), the forest, muddy land, and paddy field cannot
be easily distinguished from each other using range. However,
when the window size increases to 21 [Fig. 8(d)], they are easier
to be separated. This implies that the discriminating ability of
range for texture classification is mainly limited by the window
size. It is possible that the kappa statistic will increase further
when the window size enlarges.
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If any two of the three model parameters are combined with
DN, the combination of and range has relatively high classi-
fication accuracy. This is interesting because either or sill has
higher classification accuracy than range individually and they
are expected to be the best group. This is due to the high correla-
tion between and sill, similar to the information redundancy
among the semivariances of different lags. As expected, when
all parameters are included, best classification accuracy can be
obtained for all window sizes.

It can be found that much classification error occurs along
the transition zone between two subclasses of land cover. There
are several implications for “subclass.” First, despite of efforts
to choose the image chips with homogeneous texture, the ho-
mogeneity cannot always be guaranteed. For example, there is
a village road (a subclass) in the paddy field chip, which is mis-
classified as muddy land in Fig. 8(f). Second, the concept of
texture depends upon the scale on which we investigate. For ex-
ample, the water and surrounding trails in the fish pond image
chip interwind regularly. The water and trials can be thought of
as one texture primitive or as separate texture primitives on a
finer scale. Error usually occurs where two subclasses adjoin.
This issue may be alleviated by increasing the size of the neigh-
borhood window.

IV. CONCLUSION

The variogram model parameters, specifically range and sill,
can be used to identify and quantify the spatial characteristics of
land surface features and, therefore, can provide an effective al-
ternative to remote sensing texture classification. In this paper,
the SEVDV algorithm is proposed to extract range and sill for
bounded variograms. For the purpose of textural classification,
we design a set of decision rules to obtain the range and sill for
all kinds of variograms. The case study shows that these decision
rulesworkwell.This isbecause for remote sensing imagery, there
are few unbounded variograms. If the window size is increased to
be large enough, in most caseswecan find aspecificbounded var-
iogram model to capture the large-scale spatial variability.

Our analysis indicates that range is a very useful parameter
for texture classification, which has not been automatically ex-
tracted before. However, the maximum accuracy from range can
be obtained only when window size is relatively large, which re-
quires more computation. We expect the rapid enhancement of
computer hardware performance can alleviate such a require-
ment in the future. A further research focus is on reducing such
a computational requirement.

We expect that the proposed method can be widely applied in
geostatistical application besides remote sensing texture classi-
fication. The standard method of extracting range and sill in-
volves intense interaction between the geostatistical analyst and
computer software. Our method is able to automatically extract
these two important parameters and, therefore, can be used to
alleviate the workload of analysts and reduce the subjectivity of
their calculations.
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