On the Catenary Degrees of Numerical Monoids Generated by Generalized Arithmetic Sequences

R. Domagalski, D. Lacey, J. Pangelinan, M. Cormar

August 4th, 2015
Introduction
Introduction

Betti Elements
Introduction

Betti Elements

Catenary Degrees

R. Domagalski, D. Lacey, J. Pangelinan, M. Cormar

On the Catenary Degrees of Numerical Monoids Generated by Generalized Arithmetic Sequences
Introduction

Betti Elements

Catenary Degrees

Periodicity
On the Catenary Degrees of Numerical Monoids Generated by Generalized Arithmetic Sequences
Let S be a numerical semigroup generated by the generalized arithmetic sequence $\langle a, ha + d, \ldots, ha + kd \rangle$ where $\gcd(a, d) = 1$ and $1 \leq k \leq a - 1$.

What is known about the catenary degree?
Let S be a numerical semigroup generated by the generalized arithmetic sequence $\langle a, ha + d, \ldots, ha + kd \rangle$ where $\gcd(a, d) = 1$ and $1 \leq k \leq a - 1$.

What is known about the catenary degree?

- From Omidali [1] we know that $c(S) = \lceil a/k \rceil h + d$.
- From SDSU REU, [2] we know that the minimum and maximum nonzero catenary degrees are achieved at Betti elements of S.
\[S = \langle 9, 34, 41 \rangle \text{ with } a = 9, h = 3, d = 7 \]
Remaining Questions:

- What other catenary degrees are there?
- Exactly what elements have which catenary degrees?
Research Problem

Remaining Questions:

- What other catenary degrees are there?
- Exactly what elements have which catenary degrees?

Our research problem was to characterize $c(s)$ for all $s \in S$ in embedding dimension 3.
\[S = \langle 9, 34, 41 \rangle \text{ with } a = 9, h = 3, d = 7 \]
$S = \langle 9, 34, 41 \rangle$ with $a = 9$, $h = 3$, $d = 7$
Recall

Definition

Let ∇_s be the factorization graph for a given element $s \in S$. If ∇_s is not connected, then s is called a *Betti element* of S. We write

$$\text{Betti}(S) = \{ s \in S : \nabla_s \text{ is disconnected} \}$$

for the set of Betti elements of S.

Definition

The *dissonance* is the largest value $s \in S$ such that there is periodicity of catenary degree for all elements greater than the dissonance.
$S = \langle 9, 34, 41 \rangle$ with $a = 9, h = 3, d = 7$
Proposition

The Betti elements for \(\langle a, ha + d, ha + 2d \rangle \) are:

- \(a \cdot c(S) \) with catenary degree \(c(S) \)
- \(2(ha + d) \) with catenary degree \(h + 1 \)
- \(\left\lceil \frac{a}{2} \right\rceil (ha + 2d) \) with catenary degree \(a + d + \left\lfloor \frac{a}{2} \right\rfloor (h - 2) \)
From the Betti elements, we can find the following fundamental moves as long as all three coordinates remain non-negative:

1. \((\alpha_0, \alpha_1, \alpha_2) = (\alpha_0 - h, \alpha_1 + 2, \alpha_2 - 1) = (\alpha_0 + h, \alpha_1 - 2, \alpha_2 + 1)\)
From the Betti elements, we can find the following fundamental moves as long as all three coordinates remain non-negative:

1. \((\alpha_0, \alpha_1, \alpha_2) = (\alpha_0 - h, \alpha_1 + 2, \alpha_2 - 1) = (\alpha_0 + h, \alpha_1 - 2, \alpha_2 + 1)\)

For example: Given the monoid \(\langle 9, 34, 41 \rangle\) where \(a = 9, h = 3, d = 7,\)

\((0, 6, 0) = 6 \cdot 34 = 204\)
From the Betti elements, we can find the following fundamental moves as long as all three coordinates remain non-negative:

1. \((\alpha_0, \alpha_1, \alpha_2) = (\alpha_0 - h, \alpha_1 + 2, \alpha_2 - 1)\)
 \[= (\alpha_0 + h, \alpha_1 - 2, \alpha_2 + 1)\]

For example: Given the monoid \(\langle 9, 34, 41 \rangle\) where \(a = 9, h = 3, d = 7\),

\((0, 6, 0) = 6 \cdot 34\)
\[= 204\]

\((h, 4, 1) = h \cdot 9 + 4 \cdot 34 + 1 \cdot 41\)
\[= 204\]
From the Betti elements, we can find the following fundamental moves as long as all three coordinates remain non-negative:

1. \((\alpha_0, \alpha_1, \alpha_2) = (\alpha_0 - h, \alpha_1 + 2, \alpha_2 - 1) = (\alpha_0 + h, \alpha_1 - 2, \alpha_2 + 1)\)

For example: Given the monoid \(\langle 9, 34, 41 \rangle\) where \(a = 9, h = 3, d = 7\),

\[
(0, 6, 0) = 6 \cdot 34 = 204 \\
(h, 4, 1) = h \cdot 9 + 4 \cdot 34 + 1 \cdot 41 = 204 \\
(2h, 2, 2) = 2h \cdot 9 + 2 \cdot 34 + 2 \cdot 41 = 204
\]
From the Betti elements, we can find the following fundamental moves as long as all three coordinates remain non-negative:

1. \((\alpha_0, \alpha_1, \alpha_2) = (\alpha_0 - h, \alpha_1 + 2, \alpha_2 - 1)\)
 \[= (\alpha_0 + h, \alpha_1 - 2, \alpha_2 + 1)\]

For example: Given the monoid \(\langle 9, 34, 41 \rangle\) where \(a = 9, h = 3, d = 7\),

\[(0, 6, 0) = 6 \cdot 34\]
\[= 204\]

\[(h, 4, 1) = h \cdot 9 + 4 \cdot 34 + 1 \cdot 41\]
\[= 204\]

\[(2h, 2, 2) = 2h \cdot 9 + 2 \cdot 34 + 2 \cdot 41\]
\[= 204\]

\[(3h, 0, 3) = 3h \cdot 9 + 0 \cdot 34 + 3 \cdot 41\]
\[= 204\]
From the Betti elements, we can find the following fundamental
moves as long as all three coordinates remain non-negative:

1. \((\alpha_0, \alpha_1, \alpha_2) = (\alpha_0 - h, \alpha_1 + 2, \alpha_2 - 1)\)
 \(= (\alpha_0 + h, \alpha_1 - 2, \alpha_2 + 1)\)

2. \((\alpha_0, \alpha_1, \alpha_2) = (\alpha_0 + c(S), \alpha_1 - a + 2 \left\lfloor \frac{a}{2} \right\rfloor, \alpha_2 - \left\lfloor \frac{a}{2} \right\rfloor)\)
 \(= (\alpha_0 - c(S), \alpha_1 + a - 2 \left\lfloor \frac{a}{2} \right\rfloor, \alpha_2 + \left\lfloor \frac{a}{2} \right\rfloor)\)

3. \((\alpha_0, \alpha_1, \alpha_2) = (\alpha_0 - \left\lfloor \frac{a}{2} \right\rfloor h - d, \alpha_1 - a + 2 \left\lfloor \frac{a}{2} \right\rfloor, \alpha_2 + a - \left\lfloor \frac{a}{2} \right\rfloor)\)
 \(= (\alpha_0 + \left\lfloor \frac{a}{2} \right\rfloor h + d, \alpha_1 + a - 2 \left\lfloor \frac{a}{2} \right\rfloor, \alpha_2 - a + \left\lfloor \frac{a}{2} \right\rfloor)\)
Let $S = \langle 9, 34, 41 \rangle$.

The function $c(s)$ for $s \in S$ is shown in the graph.

With $a = 9$, $h = 3$, and $d = 7$.
Let $S = \langle a, ha + d, ha + 2d \rangle$ where $gcd(a, d) = 1$. The set of catenary degrees is $C(S) = \{0\}$.
Catenary Set

Let $S = \langle a, ha + d, ha + 2d \rangle$ where $\gcd(a, d) = 1$. The set of catenary degrees is $C(S) = \{0, h + 1\}$.

R. Domagalski, D. Lacey, J. Pangelinan, M. Cormar
On the Catenary Degrees of Numerical Monoids Generated by Generalized Arithmetic Sequences
Let $S = \langle a, ha + d, ha + 2d \rangle$ where $gcd(a, d) = 1$. The set of catenary degrees is $C(S) = \{0, h + 1, a + d + x(h - 2)\}$. We will now show which elements obtain these catenary degrees and propose a closed form solution for any element the catenary degree of any element $s \in S$.

R. Domagalski, D. Lacey, J. Pangelinan, M. Cormar

On the Catenary Degrees of Numerical Monoids Generated by Generalized Arithmetic Sequences
Let $S = \langle a, ha + d, ha + 2d \rangle$ where $gcd(a, d) = 1$. The set of catenary degrees is

$C(S) = \{0, h + 1, a + d + x(h - 2), c(S)\}$ for $x \in \{1, \ldots, \left\lfloor \frac{a}{2} \right\rfloor\}$
Catenary Set

Let $S = \langle a, ha + d, ha + 2d \rangle$ where $\gcd(a, d) = 1$.

The set of catenary degrees is

$C(S) = \{0, h + 1, a + d + x(h - 2), c(S)\}$ for $x \in \{1, \ldots, \left\lfloor \frac{a}{2} \right\rfloor\}$

We will now show which elements obtain these catenary degrees and propose a closed form solution for any element the catenary degree of any element $s \in S$.

R. Domagalski, D. Lacey, J. Pangelinan, M. Cormar

On the Catenary Degrees of Numerical Monoids Generated by Generalized Arithmetic Sequences
\[S = \langle 9, 34, 41 \rangle \] with \(a = 9, \ h = 3, \ d = 7 \)
The following elements have only a unique factorization and thus have catenary degree zero.

If a is an even number:

1. $(\alpha_0, \alpha_1, 0)$, $\alpha_0 \in \{0, \ldots, c(S) - 1\}$, $\alpha_1 \in \{0, 1\}$
2. $(\alpha_0, \alpha_1, \alpha_2)$, $\alpha_0 \in \{0, \ldots, h - 1\}$, $\alpha_1 \in \{0, 1\}$, $\alpha_2 \in \{0, \ldots, \left\lfloor \frac{a}{2} \right\rfloor - 1\}$

If a is an odd number:

1. $(\alpha_0, \alpha_1, 0)$, $\alpha_0 \in \{0, \ldots, c(S) - 1 - \alpha_1 h\}$, $\alpha_1 \in \{0, 1\}$
2. $(\alpha_0, \alpha_1, \alpha_2)$, $\alpha_0 \in \{0, \ldots, h - 1\}$, $\alpha_1 \in \{0, 1\}$, $\alpha_2 \in \{0, \ldots, \left\lfloor \frac{a}{2} \right\rfloor - \alpha_1\}$

R. Domagalski, D. Lacey, J. Pangelinan, M. Cormar

On the Catenary Degrees of Numerical Monoids Generated by Generalized Arithmetic Sequences
$S = \langle 9, 34, 41 \rangle$ with $a = 9, h = 3, d = 7$
\[S = \langle 9, 34, 41 \rangle \text{ with } a = 9, \ h = 3, \ d = 7 \]
Proposition

The element \((a - x)(ha + 2d)\) has catenary degree \(a + d + x(h - 2)\) for \(x \in \{1, \ldots, \left\lfloor \frac{a}{2} \right\rfloor \} \).
$S = \langle 9, 34, 41 \rangle$ with $a = 9$, $h = 3$, $d = 7$
$S = \langle 9, 34, 41 \rangle$ with $a = 9$, $h = 3$, $d = 7$
Proposition

The element $(a - x)(ha + 2d)$ has catenary degree $a + d + x(h - 2)$ for $x \in \{1, \ldots, \left\lfloor \frac{a}{2} \right\rfloor \}$.

Proposition

The element $ha + d + aah - xah + 2ad - 2xd = (0, 1, a - x)$ has catenary degree $a + d + x(h - 2)$ for $x \in \{1, \ldots, \left\lfloor \frac{a}{2} \right\rfloor \}$.
Proposition

The element \((a - x)(ha + 2d)\) has catenary degree \(a + d + x(h - 2)\) for \(x \in \{1, \ldots, \lfloor \frac{a}{2} \rfloor \} \).

Proposition

The element \(ha + d + aah - xah + 2ad - 2xd = (0, 1, a - x)\) has catenary degree \(a + d + x(h - 2)\) for \(x \in \{1, \ldots, \lfloor \frac{a}{2} \rfloor \} \).

Proposition

The element \((m, \alpha_1, a - x)\) for \(\alpha_1 \in \{0, 1\}, m \in \mathbb{N}\) also has catenary degree \(a + d + x(h - 2)\).
\[S = \langle 9, 34, 41 \rangle \text{ with } a = 9, h = 3, d = 7 \]
Catenary Degree $c(S)$

Proposition

Let S be a numerical semigroup generated by a generalized arithmetic sequence. Then, $c(m \cdot a) = c(S)$ for $m \geq c(S)$.
\[S = \langle 9, 34, 41 \rangle \text{ with } a = 9, h = 3, d = 7 \]
Catenary Degree $h + 1$

Theorem

$c(n) = h + 1$ if and only if n minus the Betti element $2(ha + d)$ is in the monoid S.
Consider the element 272 in the monoid $S = \langle 9, 34, 41 \rangle$.
Consider the element 272 in the monoid $S = \langle 9, 34, 41 \rangle$.
For 272 in $S = \langle 9, 34, 41 \rangle$.

1. $272 - 2(ha + d) = 272 - 68 = 204$

 $204 \in S$ since $6 \cdot 34 = 204$.

R. Domagalski, D. Lacey, J. Pangelinan, M. Cormar

On the Catenary Degrees of Numerical Monoids Generated by Generalized Arithmetic Sequences
For 272 in $S = \langle 9, 34, 41 \rangle$.

1. $272 - 2(ha + d) = 272 - 68 = 204$

 $204 \in S$ since $6 \cdot 34 = 204$.

2. $272 - \left\lceil \frac{a}{2} \right\rceil (ha + 2d) = 272 - 205 = 67$

 $67 \not\in S$ since $9 \nmid 67$ and $67 < 2 \cdot 34$.

R. Domagalski, D. Lacey, J. Pangelinan, M. Cormar

On the Catenary Degrees of Numerical Monoids Generated by Generalized Arithmetic Sequences
For 272 in $S = \langle 9, 34, 41 \rangle$.

1. $272 - 2(ha + d) = 272 - 68 = 204$

 $204 \in S$ since $6 \cdot 34 = 204$.

2. $272 - \left\lceil \frac{a}{2} \right\rceil (ha + 2d) = 272 - 205 = 67$

 $67 \notin S$ since $9 \nmid 67$ and $67 < 2 \cdot 34$.

3. $272 - a \left(\left\lceil \frac{a}{2} \right\rceil h + d \right) = 272 - 198 = 74$

 $74 \notin S$.
Periodicity

\[S = \langle 9, 34, 41 \rangle \text{ with } a = 9, h = 3, d = 7 \]
Periodicity

\[S = \langle 9, 34, 41 \rangle \text{ with } a = 9, \ h = 3, \ d = 7 \]
Periodicity

Proposition

Recall that $x \in \{1, \ldots, \left\lfloor \frac{a}{2} \right\rfloor \}$. The elements $(m, 0, a - x)$, $(m, 1, a - x)$, and $(m, 0, 0)$ have different equivalence classes mod a. Thus there are a distinct equivalence classes mod a.

Theorem

The dissonance is given by $a \cdot c(S) + F(S)$, where $F(S) = \left\lceil \frac{a-1}{2} \right\rceil ha + ad - a - d$, and $c(S) = \left\lceil \frac{a}{2} \right\rceil h + d$. The catenary degree of the Dissonance is $h + 1$. After the Dissonance we have periodicity a.
Closed Form Solution

Theorem

Let \(S = \langle a, ha + d, ha + 2d \rangle \) and \(x \in S \). Define
\(y_1 = x - b_1, y_2 = x - b_2, \) and \(y_3 = x - b_3 \) where \(b_1, b_2, \) and \(b_3 \) are the Betti elements of \(S \). We can write \(x = qa + id \) with \(q, i \in \mathbb{N}_0 \) and \(i \in \{ 0, \ldots, a - 1 \} \), then

\[
c(x) = \begin{cases}
0 & \text{if } y_j \notin S, \forall j \\
h + 1 & \text{if only } y_1 \in S \\
a + d + \left\lceil \frac{a-i}{2} \right\rceil (h - 2) + a(\text{mod}2)\left\lfloor \frac{a-i}{a} \right\rfloor & \text{if } y_2 \in S \text{ or } y_3 \in S
\end{cases}
\]
Thank you for listening!

We would like to extend a special thanks to the PURE Mathematics program and ⋅⋅⋅

- Dr. Brian Loft, Dr. Robert Pelayo, Dr. Brian Wissman,
- Graduate Assistants Felix Gotti and Marly Cormar,
- Dr. Rebecca García and Dr. Luis García,
- Superstars Dr. Scott Chapman and Dr. Chris O’Neill,
- University of Hawai’i Hilo and Sam Houston State University,
- NSF Grants DMS-1045082 and DMS-1045147 and an NSA Grant.
References

TEAM VOLCATNIC MEOWTAINS!

R. Domagalski, D. Lacey, J. Pangelinan, M. Cormar

On the Catenary Degrees of Numerical Monoids Generated by Generalized Arithmetic Sequences