Primality in Arithmetically Generated Numerical Monoids

Ashley Mailloux, Meghan Malachi, John Spaw

July 17, 2014
Overview
Overview

- Fundamentals of ω-primality
Overview

- Fundamentals of ω-primality
- ω-primality of generators
Overview

- Fundamentals of ω-primality
- ω-primality of generators
- Bad elements and the dissonance point
Overview

- Fundamentals of ω-primality
- ω-primality of generators
- Bad elements and the dissonance point
- Eventual quasilinearity of $\omega(n)$ in numerical monoids
Motivating Question

How prime are certain elements in a numerical monoid?

Numerical monoids are not unique factorization domains.

This leads to interesting properties in terms of primality and factorizations.
Motivating Question

- How prime are certain elements in a numerical monoid?
Motivating Question

- How prime are certain elements in a numerical monoid?
- Numerical monoids are not unique factorization domains.
Motivating Question

- How prime are certain elements in a numerical monoid?
- Numerical monoids are not unique factorization domains.
- This leads to interesting properties in terms of primality and factorizations.
Primality

Consider the monoid \mathbb{N}^*, which is the natural numbers under the binary operation of multiplication.
Primality

Consider the monoid \mathbb{N}^*, which is the natural numbers under the binary operation of multiplication.

We say an non-unit $p \in \mathbb{N}$ is prime if whenever $p \mid (a_1 \cdot a_2 \cdot \ldots \cdot a_k)$ for $a_1, a_2, \ldots, a_k \in \mathbb{N}^*$, then $p \mid a_i$ for some i.
Consider the monoid \mathbb{N}^*, which is the natural numbers under the binary operation of multiplication.

We say an non-unit $p \in \mathbb{N}$ is prime if whenever $p \mid (a_1 \cdot a_2 \cdot \ldots \cdot a_k)$ for $a_1, a_2, \ldots, a_k \in \mathbb{N}^*$, then $p \mid a_i$ for some i.

In other words, whenever p divides a product, it always divides at least one term in the product.
Example of primality

Consider the monoid \mathbb{N}^*. Notice that $3 \mid 210$. Writing 210 as all possible products of natural numbers, we have:

- $3 \mid 210 = (7 \cdot 30)$
- $3 \mid 30 = (3 \cdot 30)$
- $3 \mid 30 = (6 \cdot 45)$
- $3 \mid 45 = (5 \cdot 42)$
- $3 \mid 42 = (6 \cdot 21)$
- $3 \mid 21 = (2 \cdot 3 \cdot 5 \cdot 7)$

Notice that 3 is prime in \mathbb{N}^*, hence it always divides at least 1 term in the product.
Example of primality

Consider the monoid \mathbb{N}^*. Notice that $3 \mid 210$. Writing 210 as all possible products of natural numbers, we have:

$$3|(7 \cdot 30)$$
Example of primality

Consider the monoid \mathbb{N}^*. Notice that $3 \mid 210$. Writing 210 as all possible products of natural numbers, we have:

\[3 \mid (7 \cdot 30) \quad \Rightarrow \quad 3 \mid 30\]
Example of primality

Consider the monoid \(\mathbb{N}^* \). Notice that \(3 \mid 210 \). Writing 210 as all possible products of natural numbers, we have:

\[
3 \mid (7 \cdot 30) \quad \Rightarrow \quad 3 \mid 30 \\
3 \mid (3 \cdot 70)
\]
Example of primality

Consider the monoid \mathbb{N}^*. Notice that $3 \mid 210$. Writing 210 as all possible products of natural numbers, we have:

$$3 \mid (7 \cdot 30) \implies 3 \mid 30$$

$$3 \mid (3 \cdot 70) \implies 3 \mid 3$$
Example of primality

Consider the monoid \(\mathbb{N}^* \). Notice that \(3 \mid 210 \). Writing 210 as all possible products of natural numbers, we have:

\[
\begin{align*}
3 & \mid (7 \cdot 30) \quad \Rightarrow \quad 3 \mid 30 \\
3 & \mid (3 \cdot 70) \quad \Rightarrow \quad 3 \mid 3 \\
3 & \mid (6 \cdot 45) \quad \Rightarrow \quad 3 \mid 45 \\
3 & \mid (5 \cdot 42) \quad \Rightarrow \quad 3 \mid 42 \\
3 & \mid (2 \cdot 5 \cdot 21) \quad \Rightarrow \quad 3 \mid 21 \\
3 & \mid (2 \cdot 3 \cdot 5 \cdot 7) \quad \Rightarrow \quad 3 \mid 3
\end{align*}
\]
Example of primality

Consider the monoid \mathbb{N}^*. Notice that $3 \mid 210$. Writing 210 as all possible products of natural numbers, we have:

- $3 \mid (7 \cdot 30) \Rightarrow 3 \mid 30$
- $3 \mid (3 \cdot 70) \Rightarrow 3 \mid 3$
- $3 \mid (6 \cdot 45) \Rightarrow 3 \mid 45$
- $3 \mid (5 \cdot 42) \Rightarrow 3 \mid 42$
- $3 \mid (2 \cdot 5 \cdot 21) \Rightarrow 3 \mid 21$
- $3 \mid (2 \cdot 3 \cdot 5 \cdot 7) \Rightarrow 3 \mid 3$

Notice that 3 is prime in \mathbb{N}^*, hence it always divides at least 1 term in the product.
What about composite numbers in \mathbb{N}^*?

Consider $6 \in \mathbb{N}^*$, which is composite. Notice that $6|210$.
What about composite numbers in \mathbb{N}^*?

Consider $6 \in \mathbb{N}^*$, which is composite. Notice that $6|210$.

$$6|(7 \cdot 30)$$
What about composite numbers in \(\mathbb{N}^*\)?

Consider \(6 \in \mathbb{N}^*\), which is composite. Notice that \(6|210\).

\[
6|(7 \cdot 30) \implies 6|30
\]
What about composite numbers in \mathbb{N}^*?

Consider $6 \in \mathbb{N}^*$, which is composite. Notice that $6|210$.

\[
6|(7 \cdot 30) \Rightarrow 6|30 \\
6|(3 \cdot 70)
\]
What about composite numbers in \mathbb{N}^*?

Consider $6 \in \mathbb{N}^*$, which is composite. Notice that $6|210$.

\[6|(7 \cdot 30) \quad \Rightarrow \quad 6|30\]
\[6|(3 \cdot 70) \quad \Rightarrow \quad 6 \nmid 3 \text{ and } 6 \nmid 70\]
What about composite numbers in \mathbb{N}^*?

Consider $6 \in \mathbb{N}^*$, which is composite. Notice that $6|210$.

\[
\begin{align*}
6|(7 \cdot 30) & \Rightarrow 6|30 \\
6|(3 \cdot 70) & \Rightarrow 6 \nmid 3 \text{ and } 6 \nmid 70 \\
6|(6 \cdot 45) & \Rightarrow 6|6 \\
6|(5 \cdot 42) & \Rightarrow 6|42 \\
6|(2 \cdot 5 \cdot 21) & \Rightarrow 6 \nmid 2, 6 \nmid 5, \text{ and } 6 \nmid 21 \\
6|(2 \cdot 3 \cdot 5 \cdot 7) & \Rightarrow 6 \nmid 2, 6 \nmid 3, 6 \nmid 5, \text{ and } 6 \nmid 7
\end{align*}
\]
What about composite numbers in \mathbb{N}^*?

\[6 \mid (2 \cdot 5 \cdot 21) \implies 6 \nmid 2, 6 \nmid 5, \text{ and } 6 \nmid 21 \]
What about composite numbers in \mathbb{N}^*?

\[6 | (2 \cdot 5 \cdot 21) \implies 6 \nmid 2, 6 \nmid 5, \text{ and } 6 \nmid 21 \]

\[\Rightarrow \]

Notice that 6 does not divide 2, 5 or 21, but 6 divides the product of 2 · 21.
What about composite numbers in \(\mathbb{N}^* \)?

\[
6 \mid (2 \cdot 5 \cdot 21) \Rightarrow 6 \nmid 2, 6 \nmid 5, \text{ and } 6 \nmid 21
\]

- Notice that 6 does not divide 2, 5 or 21, but 6 divides the product of 2 \cdot 21.
- It turns out that we can guarantee that 6 always divides some sub-product of 2 terms.
What about composite numbers in \mathbb{N}^*?

\[6 \mid (2 \cdot 5 \cdot 21) \implies 6 \nmid 2, 6 \nmid 5, \text{ and } 6 \nmid 21 \]

- Notice that 6 does not divide 2, 5 or 21, but 6 divides the product of 2 \cdot 21.
- It turns out that we can guarantee that 6 always divides some sub-product of 2 terms. While 6 isn’t prime in \mathbb{N}^*, it is “not very far” from being prime.
ω-primality

Definition: Let M be a cancellative, commutative monoid. For any non-unit $x \in M$, $\omega(x) = m$ if the following is true: m is the smallest positive integer with the property that whenever $x \mid \prod_{i=1}^{r} a_i$ for $r > m$, there exists a subset $T \subset \{1, 2, \ldots, r\}$ with $|T| \leq m$ such that $x \mid \prod_{i \in T} a_i$.
In other words... Given $x \in M$, if $\omega(x) = m$, then:
In other words... Given $x \in M$, if $\omega(x) = m$, then:

Whenever x divides a product of more than m terms, we know that x divides some sub product of at least m terms.
Irreducibility

Definition: Let M be a monoid. We say a non-unit $x \in M$ is *irreducible* if whenever $x = a \ast b$ then a is a unit or b is a unit.
Prime vs. Irreducible

All prime elements are irreducible, but not all irreducible elements are prime.

In the case of \mathbb{N}^*, the prime and irreducible elements are the same.
Prime vs. Irreducible

All prime elements are irreducible, but not all irreducible elements are prime.

In the case of \mathbb{N}^*, the prime and irreducible elements are the same.

What about numerical monoids?
Primality and irreducibility in numerical monoids
Recall that numerical monoids are additive monoids, not multiplicative.
Recall that numerical monoids are additive monoids, not multiplicative.

“Divisibility” is in terms of subtraction, not division.
Recall that numerical monoids are additive monoids, not multiplicative.

“Divisibility” is in terms of subtraction, not division.

The only irreducible elements in a numerical monoid are the minimal generators.
Primality and irreducibility in numerical monoids

- Recall that numerical monoids are additive monoids, not multiplicative.
- “Divisibility” is in terms of subtraction, not division.
- The only irreducible elements in a numerical monoid are the minimal generators.
- None of the generators are prime.
Why is ω-primality interesting in numerical monoids?
Why is ω-primality interesting in numerical monoids?

$\Gamma = \langle 6, 7 \rangle$
Recall: The irreducible elements in a numerical monoid are the minimal generators.
Primality of generators in numerical monoids

Recall: The irreducible elements in a numerical monoid are the minimal generators.

Although none of these elements are prime, previous work has investigated the ω-primality of the generators to see “how prime” they are.
Previously known results

Chapman et al. provide a closed form for the ω-primality of generators in $\Gamma = \langle m, m + 1, m + 2 \rangle$.
Previously known results

Chapman et al. provide a closed form for the ω-primality of generators in $\Gamma = \langle m, m + 1, m + 2 \rangle$.

We sought to generalize these results for $\Gamma = \langle m, m + d, m + 2d \rangle$ for step size d.
Example

\[
\begin{array}{|c|c|}
\hline
\text{Generator} & \omega\text{-primality} \\
\hline
3 & 2 \\
5 & 4 \\
7 & 4 \\
\hline
\end{array}
\]

\(\omega(n)\) for the generators of the monoid \(\langle 3, 5, 7 \rangle\).
Numerical monoids with step size 2

<table>
<thead>
<tr>
<th>Gen</th>
<th>ω</th>
<th>Gen</th>
<th>ω</th>
<th>Gen</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Gen</td>
<td>ω</td>
<td>Gen</td>
<td>ω</td>
<td>Gen</td>
<td>ω</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>11</td>
<td>6</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>13</td>
<td>8</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>17</td>
<td>9</td>
</tr>
</tbody>
</table>

ω(n) of the generators for \(\Gamma = \langle m, m + 2, m + 4 \rangle \) where \(m \) is odd.
Example

This table displays $\omega(n)$ for the generators of the monoid $\langle 5, 9, 13 \rangle$.

<table>
<thead>
<tr>
<th>Generator</th>
<th>ω-primality</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
</tr>
</tbody>
</table>
Numerical monoids with step size 4

\[
\begin{array}{c|c}
\text{Gen} & \omega \\
5 & 3 \\
9 & 7 \\
13 & 7 \\
\end{array}
\begin{array}{c|c}
\text{Gen} & \omega \\
7 & 4 \\
11 & 8 \\
15 & 8 \\
\end{array}
\begin{array}{c|c}
\text{Gen} & \omega \\
9 & 5 \\
13 & 9 \\
17 & 9 \\
\end{array}
\begin{array}{c|c}
\text{Gen} & \omega \\
11 & 6 \\
15 & 10 \\
19 & 10 \\
\end{array}
\begin{array}{c|c}
\text{Gen} & \omega \\
13 & 7 \\
17 & 11 \\
21 & 11 \\
\end{array}
\]

\(\omega(n)\) of the generators for \(\Gamma = \langle m, m + 4, m + 8 \rangle\) where \(m\) is odd.
Conjecture: Let $\Gamma = \langle m, m + d, m + 2d \rangle$ be a numerical monoid.
Conjecture: Let $\Gamma = \langle m, m + d, m + 2d \rangle$ be a numerical monoid. Then,

$$\omega(m) = \left\lceil \frac{m}{2} \right\rceil$$
$$\omega(m + d) = \left\lceil \frac{m}{2} \right\rceil + d + 1$$
$$\omega(m + 2d) = \left\lceil \frac{m}{2} \right\rceil + d.$$
“Bad elements” in Γ
“Bad elements” in Γ

$\Gamma = \langle 4, 7, 10 \rangle$
Bad elements

A bad element $b \in \Gamma$ is such that $\omega(b)$ does not follow the eventual quasilinear pattern. The set of bad elements in Γ is denoted $\text{Bad}(\Gamma)$.
Bad elements

A **bad element** $b \in \Gamma$ is such that $\omega(b)$ does not follow the eventual quasilinear pattern.

The set of bad elements in Γ is denoted $Bad(\Gamma)$.
Quasilinearity and the dissonance point

Given a sufficiently large \(n \in \Gamma \), \(\omega(n) \) is eventually quasilinear.

The dissonance point, denoted \(\text{dis}(\Gamma) \), is the largest \(n \in \Gamma \) such that \(\omega(n) \) does not follow the eventual quasilinear pattern. That is, \(\text{dis}(\Gamma) = \max(\text{Bad}(\Gamma)) \).
Quasilinearity and the dissonance point

Given a sufficiently large $n \in \Gamma$, $\omega(n)$ is *eventually* quasilinear,
Quasilinearity and the dissonance point

Given a sufficiently large \(n \in \Gamma \), \(\omega(n) \) is eventually quasilinear,

The **dissonance point**, denoted \(\text{dis}(\Gamma) \), is the largest \(n \in \Gamma \) such that \(\omega(n) \) does not follow the eventual quasilinear pattern.
Quasilinearity and the dissonance point

Given a sufficiently large $n \in \Gamma$, $\omega(n)$ is *eventually* quasilinear,

The *dissonance point*, denoted $\text{dis}(\Gamma)$, is the largest $n \in \Gamma$ such that $\omega(n)$ does not follow the eventual quasilinear pattern.

That is, $\text{dis}(\Gamma) = \max(\text{Bad}(\Gamma))$.
Bullets

Let $\Gamma = \langle n_1, n_2, \ldots, n_k \rangle$ be a numerical monoid.
Bullets

Let $\Gamma = \langle n_1, n_2, \ldots, n_k \rangle$ be a numerical monoid.

A factorization $[a_1, \ldots, a_k] \in \mathbb{N}^k$ is a bullet for $n \in \Gamma$ if the following hold:

1. $\left(\sum_{i=1}^{k} a_i n_i \right) - n \in \Gamma$
2. $\left(\sum_{i=1}^{k} a_i n_i - n_j \right) - n_j \in \Gamma$ for $a_j > 0$
Bullets

Let $\Gamma = \langle n_1, n_2, \ldots, n_k \rangle$ be a numerical monoid.

A factorization $[a_1, \ldots, a_k] \in \mathbb{N}^k$ is a **bullet** for $n \in \Gamma$ if the following hold:

$$\sum_{i=1}^{k} a_i n_i - n \in \Gamma$$
Bullets

Let $\Gamma = \langle n_1, n_2, \ldots, n_k \rangle$ be a numerical monoid.

A factorization $[a_1, \ldots, a_k] \in \mathbb{N}^k$ is a **bullet** for $n \in \Gamma$ if the following hold:

1. $\left(\sum_{i=1}^{k} a_i n_i \right) - n \in \Gamma$
2. $\left(\sum_{i=1}^{k} a_i n_i - n_j \right) - n \notin \Gamma$ for $a_j > 0$
Bullets

Let $\Gamma = \langle n_1, n_2, \ldots, n_k \rangle$ be a numerical monoid.

A factorization $[a_1, \ldots, a_k] \in \mathbb{N}^k$ is a **bullet** for $n \in \Gamma$ if the following hold:

\[
\begin{align*}
\sum_{i=1}^{k} a_i n_i - n &\in \Gamma \\
\sum_{i=1}^{k} a_i n_i - n_j - n &\notin \Gamma \text{ for } a_j > 0
\end{align*}
\]

The set of bullets for $n \in \Gamma$ is denoted $\text{bul}(n)$.
Let $\Gamma = \langle n_1, n_2, \ldots, n_k \rangle$ be a numerical monoid.

A factorization $[a_1, \ldots, a_k] \in \mathbb{N}^k$ is a **bullet** for $n \in \Gamma$ if the following hold:

\[
\left(\sum_{i=1}^{k} a_i n_i \right) - n \in \Gamma
\]

\[
\left(\sum_{i=1}^{k} a_i n_i - n_j \right) - n \notin \Gamma \text{ for } a_j > 0
\]

The set of bullets for $n \in \Gamma$ is denoted $\text{bul}(n)$.

The ω-primality for an element is equal to the length of its maximum length bullet.
Motivation

Let $\Gamma = \langle 3, 4 \rangle$
Motivation

Let $\Gamma = \langle 3, 4 \rangle$

For $n = 15$, if $\omega(n)$ was completely quasilinear, we would have $\omega(15) = 5$
Motivation

Let \(\Gamma = \langle 3, 4 \rangle \)

For \(n = 15 \), if \(\omega(n) \) was completely quasilinear, we would have \(\omega(15) = 5 \)

However, notice that \(\omega(15) = 6 \).
Conjecture: Let $\Gamma = \langle m, m + d, m + 2d \rangle$. Then,
Conjecture: Let $\Gamma = \langle m, m + d, m + 2d \rangle$. Then,

- $Bad(\Gamma) = \{0, \text{dis}(\Gamma)\}$
Conjecture: Let $\Gamma = \langle m, m + d, m + 2d \rangle$. Then,

- $Bad(\Gamma) = \{0, \text{dis}(\Gamma)\}$
- For every $b \in Bad(\Gamma)$, b has a unique maximal length bullet.
Conjecture: Let $\Gamma = \langle m, m + d, m + 2d \rangle$. Then,

- $Bad(\Gamma) = \{0, \text{dis}(\Gamma)\}$
- For every $b \in Bad(\Gamma)$, b has a unique maximal length bullet.
- The *only* maximal length bullet of dis(Γ) is of the form $[0, \omega, 0]$.
Dissonance points for Γ

Let $\Gamma = \langle m, m + d, m + 2d \rangle$.
Dissonance points for Γ

Let $\Gamma = \langle m, m + d, m + 2d \rangle$.

- Examples suggest that arithmetically generated numerical monoids of embedding dimension 3 only have a non-trivial dissonance point if the multiplicity is even.
Dissonance points for Γ

Let $\Gamma = \langle m, m + d, m + 2d \rangle$.

- Examples suggest that arithmetically generated numerical monoids of embedding dimension 3 only have a non-trivial dissonance point if the multiplicity is even.

- When the multiplicity is odd, Γ has a trivial dissonance point.
Conjecture: Let $\Gamma = \langle m, m + d, m + 2d \rangle$.

$$dis(\Gamma) = \begin{cases} \frac{m^2}{2} & \text{if } m \text{ is even.} \\ 0 & \text{if } m \text{ is odd.} \end{cases}$$
Example

\[\omega(n) \] for Generators

Dissonance points in \(\Gamma \)

Quasilinearity in \(\Gamma \)

Bad elements

Dissonance points

\[\Gamma_1 = \langle 3, 8, 13 \rangle \]

\[\Gamma_2 = \langle 4, 9, 14 \rangle \]

Notice that we have \(\text{dis}(\Gamma_1) = 0 \) and \(\text{dis}(\Gamma_2) = 8 \).
Example

\[\Gamma_1 = \langle 3, 8, 13 \rangle \quad \text{and} \quad \Gamma_2 = \langle 4, 9, 14 \rangle \]
Example

\[\Gamma_1 = \langle 3, 8, 13 \rangle \quad \Gamma_2 = \langle 4, 9, 14 \rangle \]

Notice that we have \(\text{dis}(\Gamma_1) = 0 \) and \(\text{dis}(\Gamma_2) = 8 \).
\[\Gamma = \langle 4, 7, 10 \rangle \]
Example: Consider $\Gamma = \langle 4, 7, 10 \rangle$ and the element $8 \in \Gamma$.
Example: Consider $\Gamma = \langle 4, 7, 10 \rangle$ and the element $8 \in \Gamma$.

- $\text{dis}(\Gamma) = \frac{4^2}{2} = 8$
Example: Consider $\Gamma = \langle 4, 7, 10 \rangle$ and the element $8 \in \Gamma$.

- $\text{dis}(\Gamma) = \frac{4^2}{2} = 8$
- The set of bullets is
 $$\text{bul}(8) = \{ [2, 0, 0], [0, 2, 1], [1, 2, 0], [0, 4, 0] \}.$$
Example: Consider \(\Gamma = \langle 4, 7, 10 \rangle \) and the element \(8 \in \Gamma \).

- \(\text{dis}(\Gamma) = \frac{4^2}{2} = 8 \)
- The set of bullets is
 \[
 \text{bul}(8) = \{ [2, 0, 0], [0, 2, 1], [1, 2, 0], [0, 4, 0] \}.
 \]
- The maximal length bullet of 8 is \([0, 4, 0]\).
Eventual Quasilinearity in $\omega(n)$

Recap: We have explored the ω-primality for the following cases:
Eventual Quasilinearity in $\omega(n)$

Recap: We have explored the ω-primality for the following cases:

- Generators
Eventual Quasilinearity in $\omega(n)$

Recap: We have explored the ω-primality for the following cases:

- Generators
- The early, “noisy” period
Eventual Quasilinearity in $\omega(n)$

Recap: We have explored the ω-primality for the following cases:

- Generators
- The early, “noisy” period
- What’s next?
Fundamentals
\(\omega(n) \) for Generators
Dissonance points in \(\Gamma \)
Quasilinearity in \(\Gamma \)

What do we know?
Closed form
Implications

\[\Gamma = \langle 11, 12, 13 \rangle \]
\[\Gamma = \langle 4, 5, 6 \rangle \]
ω(n) for past the dissonance point

What do we know about eventual quasilinearity?

O’Neill and Pelayo showed that in a numerical monoid:
ω(n) for past the dissonance point

What do we know about eventual quasilinearity?

O’Neill and Pelayo showed that in a numerical monoid:

» ω(n) is well-behaved for all n greater than the dissonance point;
What do we know about eventual quasilinearity?

O’Neill and Pelayo showed that in a numerical monoid:

- $\omega(n)$ is well-behaved for all n greater than the dissonance point;
- $\omega(n)$ becomes *eventually* quasilinear with a period n_1 and a common slope $\frac{1}{n_1}$;
ω(n) for past the dissonance point

What do we know about eventual quasilinearity?

O’Neill and Pelayo showed that in a numerical monoid:

- ω(n) is well-behaved for all n greater than the dissonance point;
- ω(n) becomes eventually quasilinear with a period n_1 and a common slope $\frac{1}{n_1}$;
- The lines are usually equidistant from one another.
<table>
<thead>
<tr>
<th>Fundamentals</th>
<th>What do we know?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega(n)) for Generators</td>
<td>Closed form</td>
</tr>
<tr>
<td>Dissonance points in (\Gamma)</td>
<td>Implications</td>
</tr>
<tr>
<td>Quasilinearity in (\Gamma)</td>
<td></td>
</tr>
</tbody>
</table>

\(\omega(n) \) for past the dissonance point

What should the equation look like?

- The closed form for the \(\omega \)-primality past the dissonance point should be a set of lines.
- Each line has a common slope of \(\frac{1}{n} \).
- The intercept between each line should vary.
What should the equation look like?

- The closed form for the ω-primality past the dissonance point should be a set of lines.
What should the equation look like?

- The closed form for the ω-primality past the dissonance point should be a set of lines.
- Each line has a common slope of $\frac{1}{n_1}$.
ω(n) for past the dissonance point

What should the equation look like?

- The closed form for the ω-primality past the dissonance point should be a set of lines.
- Each line has a common slope of \(\frac{1}{n_1} \).
- The intercept between each line should vary.
\[\omega(n) \text{ in arithmetically generated } \Gamma \]

Conjecture: Let \(\Gamma = \langle m, m + d, \ldots, m + (e - 1)d \rangle \) be a numerical monoid.
Conjecture: Let $\Gamma = \langle m, m + d, \ldots, m + (e - 1)d \rangle$ be a numerical monoid.

Then for all $n > \text{dis}(\Gamma)$, we have:

$$w_i(n) = \begin{cases}
\frac{1}{m}n + \left\lceil \frac{m + e - 4}{e - 1} \right\rceil + \frac{d \cdot i}{m}, & \text{if } i < m - 1 \\
\frac{1}{m}n + \left\lceil \frac{m + e - 3}{e - 1} \right\rceil + \frac{d \cdot i}{m}, & \text{if } i = m - 1
\end{cases}$$

$$n \equiv -d \cdot i \mod m.$$
ω(n) for Generators
Dissonance points in Γ
Quasilinearity in Γ

ω(n) in arithmetically generated Γ

In “most” cases, all lines in the quasilinear patterns are equidistant from one another.

Sometimes the top line (i = m − 1) is “shifted” up by 1.
\(\omega(n) \) in arithmetically generated \(\Gamma \)

- In “most” cases, all lines in the quasilinear patterns are equidistant from one another.
In “most” cases, all lines in the quasilinear patterns are equidistant from one another.

Sometimes the top line \((i = m - 1)\) is “shifted” up by 1.
\[\Gamma = \langle 4, 5, 6 \rangle \]
ω(n) in arithmetically generated Γ

Conjecture:

<table>
<thead>
<tr>
<th>Fundamentals</th>
<th>What do we know?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω(n) for Generators</td>
<td>Closed form</td>
</tr>
<tr>
<td>Dissonance points in Γ</td>
<td>Implications</td>
</tr>
<tr>
<td>Quasilinearity in Γ</td>
<td></td>
</tr>
</tbody>
</table>

Ashley Mailloux, Meghan Malachi, John Spaw

Primality in Arithmetically Generated Numerical Monoids
Conjecture: Let $\Gamma = \langle m, m + d, m + 2d, \ldots, m + (e - 1)d \rangle$ be a numerical monoid.
ω(n) in arithmetically generated Γ

Conjecture: Let $\Gamma = \langle m, m+d, m+2d, \ldots, m+(e-1)d \rangle$ be a numerical monoid.

$$m_{\text{shift}}(e) = \{ e + \ell(e - 1) + 1 \mid \ell \in \mathbb{N} \}. $$
\[\Gamma = \langle 4, 5, 6 \rangle \]

\[m_{\text{shift}}(e) = \{ e + \ell(e - 1) + 1 \mid \ell \in \mathbb{N} \} \]
\[\Gamma = \langle 4, 5, 6 \rangle \]

\[m_{\text{shift}}(e) = \{ e + \ell(e - 1) + 1 \mid \ell \in \mathbb{N} \} \]

\[m_{\text{shift}}(3) = \{ 4 + 2\ell \mid \ell \in \mathbb{N} \} \]
\[\Gamma = \langle 4, 5, 6 \rangle \]

\[m_{shift}(e) = \{ e + \ell(e - 1) + 1 \mid \ell \in \mathbb{N} \} \]

\[m_{shift}(3) = \{ 4 + 2\ell \mid \ell \in \mathbb{N} \} = \{ 4 \} \]
\[\Gamma = \langle 4, 5, 6 \rangle \]

\[m_{shift}(e) = \{ e + \ell(e - 1) + 1 \mid \ell \in \mathbb{N} \} \]

\[m_{shift}(3) = \{ 4 + 2\ell \mid \ell \in \mathbb{N} \} \]

\[= \{ 4, 6 \} \]
\[\Gamma = \langle 4, 5, 6 \rangle \]

\[
m_{shift}(e) = \{ e + \ell(e - 1) + 1 \mid \ell \in \mathbb{N} \}
\]

\[
m_{shift}(3) = \{ 4 + 2\ell \mid \ell \in \mathbb{N} \}
\]

\[
= \{ 4, 6, 8, 10, \ldots \}
\]
\[\Gamma = \langle 4, 5, 6 \rangle \]
Fundamentals

ω(n) for Generators

Dissonance points in Γ

Quasilinearity in Γ

What do we know?

Closed form

Implications

\[m_{\text{shift}}(e) = \{ e + \ell(e - 1) + 1 \mid \ell \in \mathbb{N} \} \]

Numerical monoids that satisfy this condition have interesting properties regarding their \(\omega \)-primality.
\[m_{\text{shift}}(e) = \{ e + \ell(e - 1) + 1 \mid \ell \in \mathbb{N} \} \]

Numerical monoids that satisfy this condition have interesting properties regarding their \(\omega \)-primality.

- We have an upward shift in the top line of the quasilinear pattern.
\[m_{\text{shift}}(e) = \{ e + \ell(e - 1) + 1 \mid \ell \in \mathbb{N} \} \]

Numerical monoids that satisfy this condition have interesting properties regarding their \(\omega \)-primality.

- We have an upward shift in the top line of the quasilinear pattern.
- There exist non-trivial bad elements.
\[m_{\text{shift}}(e) = \{ e + \ell(e - 1) + 1 \mid \ell \in \mathbb{N} \} \]

Numerical monoids that satisfy this condition have interesting properties regarding their \(\omega \)-primality.

- We have an upward shift in the top line of the quasilinear pattern.
- There exist non-trivial bad elements.
- There exists a non-trivial dissonance point.
\[\Gamma = \langle 10, 11, 12, 13, 14 \rangle \]
\[\Gamma = \langle 10, 11, 12, 13, 14 \rangle \]

\[m_{\text{shift}}(5) = \{ 6 + 4\ell \mid \ell \in \mathbb{N} \} \]
\[\Gamma = \langle 10, 11, 12, 13, 14 \rangle \]

- \(m_{\text{shift}} (5) = \{6 + 4\ell \mid \ell \in \mathbb{N}\} \)
- Shifts will occur when \(m = 6, 10, 14, 18, 22, \ldots \).
\(\Gamma = \langle 10, 11, 12, 13, 14 \rangle \)

- \(m_{\text{shift}}(5) = \{ 6 + 4\ell \mid \ell \in \mathbb{N} \} \)
- Shifts will occur when \(m = 6, 10, 14, 18, 22, \ldots \).
- Notice: A top line shift will not occur for \(m = 11 \).
Figure: Plots of $\omega(n)$ for $\langle 10, 11, 12, 13, 14 \rangle$ and $\langle 11, 12, 13, 14, 15 \rangle$
Fundamentals

$\omega(n)$ for Generators

Dissonance points in Γ

Quasilinearity in Γ

What do we know?

Closed form

Implications

Figure: Plots of $\omega(n)$ for $\langle 10, 11, 12, 13, 14 \rangle$ and $\langle 11, 12, 13, 14, 15 \rangle$

Notice that the top line is shifted in the left plot and the lines are all equidistant in the right plot.
Acknowledgements

- Dr. boB "Tutu" Pelayo
- Dr. Brian "Rusty Canary" Wissman
- Megan "Meg Dogg" Ly
- National Science Foundation
- National Security Agency

Ashley Mailloux, Meghan Malachi, John Spaw

Primality in Arithmetically Generated Numerical Monoids
Acknowledgements

- Dr. boB “Tutu” Pelayo

Ashley Mailloux, Meghan Malachi, John Spaw
Acknowledgements

- Dr. boB “Tutu” Pelayo
- Dr. Brian “Rusty Canary” Wissman
Acknowledgements

- Dr. boB “Tutu” Pelayo
- Dr. Brian “Rusty Canary” Wissman
- Megan “Meg Dogg” Ly
Acknowledgements

- Dr. boB “Tutu” Pelayo
- Dr. Brian “Rusty Canary” Wissman
- Megan “Meg Dogg” Ly
- National Science Foundation
Acknowledgements

- Dr. boB “Tutu” Pelayo
- Dr. Brian “Rusty Canary” Wissman
- Megan “Meg Dogg” Ly
- National Science Foundation
- National Security Agency
Works Cited I

S. Chapman, W. Puckett, K. Shour, *On the omega values of generators of embedding dimension three numerical monoids generated by an interval*, Involve, Volume 7, Number 3

Questions?