Co-circular Kite Central Configurations in the 4-body Problem

Tasheena Barrett, Alicia Lozano, Liliana Manrique

University of Hawai‘i at Hilo
PURE Math

August 2, 2012
Outline

Introduction

Polynomials in r_{ij}^3

Perfect Squares
Glossary

Definition (Variety)

A *variety* is the set of common zeros of a collection of polynomials.
Glossary

Definition (Variety)

A *variety* is the set of common zeros of a collection of polynomials.

Definition (Ideal)

A subset $I \subset R[x_1, \ldots, x_n]$ is an *ideal* if the following holds true:

(i) $0 \in I$

(ii) If $f, g \in I$, then $f + g \in I$

(iii) If $f \in I$ and $h \in R[x_1, \ldots, x_n]$, then $hf \in I$
Glossary

Definition (Variety)

A *variety* is the set of common zeros of a collection of polynomials.

Definition (Ideal)

A subset $I \subset R[x_1, \ldots, x_n]$ is an *ideal* if the following holds true:

(i) $0 \in I$
(ii) If $f, g \in I$, then $f + g \in I$
(iii) If $f \in I$ and $h \in R[x_1, \ldots, x_n]$, then $hf \in I$

Definition (Elimination Ideal)

Given $I = \langle f_1, \ldots, f_s \rangle \subset R[x_1, \ldots, x_n]$ the *l-th elimination ideal* I_l is the ideal of $R[x_1, \ldots, x_n]$ defined by

$$I_l = I \cap R[x_{l+1}, \ldots, x_n].$$
Albouy-Chenciner Equations

- Central configurations can be described using a system of polynomial equations
Albouy-Chenciner Equations

- Central configurations can be described using a system of polynomial equations
- Using Albouy-Chenciner Equations (asymmetric)
Albouy-Chenciner Equations

- Central configurations can be described using a system of polynomial equations
- Using Albouy-Chenciner Equations (asymmetric)
- Refer to the Albouy-Chenciner Equations as the AC equations (I_{AC})

For each pair of $1 \leq i, j \leq n$:

$$G_{ij} = \sum_{k=1}^{n} m_k S_{ki} (r_{jk}^2 - r_{ik}^2 - r_{ij}^2) = 0$$

where $S_{ki} = \begin{cases} r - 3 & \text{if } k \neq i \\ 0 & \text{if } k = i \end{cases}$. If $i = j$ for each pair $1 \leq i, j \leq n$, then we get a cancellation in the AC equations.
Albouy-Chenciner Equations

- Central configurations can be described using a system of polynomial equations
- Using Albouy-Chenciner Equations (asymmetric)
- Refer to the Albouy-Chenciner Equations as the AC equations (I_{AC})

For each pair of $1 \leq i, j \leq n$:

$$G_{ij} = \sum_{k=1}^{n} m_k S_{ki}(r_{jk}^2 - r_{ik}^2 - r_{ij}^2) = 0$$
Albouy-Chenciner Equations

- Central configurations can be described using a system of polynomial equations
- Using Albouy-Chenciner Equations (asymmetric)
- Refer to the Albouy-Chenciner Equations as the AC equations \((I_{AC})\)

For each pair of \(1 \leq i, j \leq n:\)

\[G_{ij} = \sum_{k=1}^{n} m_k S_{ki} (r_{jk}^2 - r_{ik}^2 - r_{ij}^2) = 0 \]

where

\[S_{ki} = \begin{cases}
 r_{ki}^{-3} - 1 & \text{if } k \neq i \\
 0 & \text{if } k = i
\end{cases} \]
Albouy-Chenciner Equations

- Central configurations can be described using a system of polynomial equations
- Using Albouy-Chenciner Equations (asymmetric)
- Refer to the Albouy-Chenciner Equations as the AC equations (I_{AC})

For each pair of $1 \leq i, j \leq n$:

$$G_{ij} = \sum_{k=1}^{n} m_k S_{ki} (r_{jk}^2 - r_{ik}^2 - r_{ij}^2) = 0$$

where

$$S_{ki} = \begin{cases} r_{ki}^{-3} - 1 & \text{if } k \neq i \\ 0 & \text{if } k = i \end{cases}$$

Note that $r_{ij} = r_{ji}$ for all i and j, thus $S_{ij} = S_{ji}$. If $i=j$ for each pair $1 \leq i, j \leq n$, then we get a cancellation in the AC equations.
4-Body Problem

We consider a special case of the 4-body problem, specifically the co-circular kite

Theorem (Finiteness [Hampton, Moeckel])

Given a collection of positive masses, there exist finitely many central configurations in the 4-body problem, up to equivalence under rotation, translation, and scaling.
Definitions

Definition (Kite)

A *kite* is a convex quadrilateral with two pairs of distinct congruent sides adjacent to each other.

Definition (Co-circular Kite)

A *co-circular kite* is a kite that is inscribed in a circle and one of the diagonals forms the diameter of the circle.
Setting Up Co-circular Kite Configurations

Co-circular Kite Constraints:
Setting Up Co-circular Kite Configurations

Co-circular Kite Constraints:

\[r_{23} = r_{12} \]
\[r_{34} = r_{14} \]
\[m_1 = m_3 \]
Setting Up Co-circular Kite Configurations

Co-circular Kite Constraints:

\[r_{23} = r_{12} \]
\[r_{34} = r_{14} \]
\[m_1 = m_3 \]
\[k_0 = 1 - tr_{12}r_{13}r_{24}r_{14} \]
Ptolemy

Co-circular Kite Constraints:
Co-circular Kite Constraints:

\[r_{13}r_{24} \leq r_{14}r_{23} + r_{12}r_{34} \]
Co-circular Kite Constraints:

\[r_{13}r_{24} \leq r_{14}r_{23} + r_{12}r_{34} \]

\[\text{Ptol} = r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34} \]
Ptolemy

Co-circular Kite Constraints:

\[r_{13}r_{24} \leq r_{14}r_{23} + r_{12}r_{34} \]

\[\text{Ptol} = r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34} \]

\[= r_{13}r_{24} - 2r_{14}r_{12} \]
Setting Up Co-circular Kite Configurations

The Cayley-Menger determinant defined by CM forces the masses to be coplanar.

$$CM = \begin{vmatrix}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & r_{12}^2 & r_{13}^2 & r_{14}^2 \\
1 & r_{12}^2 & 0 & r_{23}^2 & r_{24}^2 \\
1 & r_{13}^2 & r_{23}^2 & 0 & r_{34}^2 \\
1 & r_{14}^2 & r_{24}^2 & r_{34}^2 & 0 \\
\end{vmatrix}$$
Setting Up Co-circular Kite Configurations

The Cayley-Menger determinant defined by CM forces the masses to be coplanar.

$$CM = \begin{vmatrix}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & r_{12}^2 & r_{13}^2 & r_{14}^2 \\
1 & r_{12}^2 & 0 & r_{23}^2 & r_{24}^2 \\
1 & r_{13}^2 & r_{23}^2 & 0 & r_{34}^2 \\
1 & r_{14}^2 & r_{24}^2 & r_{34}^2 & 0
\end{vmatrix}$$

After kite substitutions:

$$CM = (-2)r_{13}^2(r_{12}^4 + r_{13}^2r_{24}^2 - 2r_{12}^2r_{24}^2 + r_{24}^4 - 2r_{12}^2r_{14}^2 - 2r_{24}^2r_{14}^2 + r_{14}^4)$$
Example 1, $m_4 = \frac{1}{5}$

Example

$$K = [G_{12}, G_{21}, G_{13}, G_{31}, G_{14}, G_{41}, G_{34}, G_{43}, G_{24}, G_{42}, G_{23}, G_{32}, \text{nonzero, ptol, cm}]$$
Example

K = [G12, G21, G13, G31, G14, G41, G34, G43, G24, G42,
 G23, G32, nonzero, ptol, cm]

Ielim = ideal(K)
R24 = Ielim.elimination_ideal([t, r12, r14, r13, m2])
R24.gen(0).factor()
Example 1, \(m_4 = \frac{1}{5} \)

Example

\[K = \{G_{12}, G_{21}, G_{13}, G_{31}, G_{14}, G_{41}, G_{34}, G_{43}, G_{24}, G_{42}, G_{23}, G_{32}, \text{nonzero, ptol, cm}\} \]

\[I_{elim} = \text{ideal}(K) \]
\[R_{24} = I_{elim}.\text{elimination_ideal}([t, r_{12}, r_{14}, r_{13}, m_{2}]) \]
\[R_{24}.\text{gen}(0).\text{factor}() \]

Output:

\[(2230918027632\times r_{24}^{24} - 1557072438768\times r_{24}^{21} - 6057772562340\times r_{24}^{18} + 1636987206176\times r_{24}^{15} + 4385658414560\times r_{24}^{12} - 839052304212\times r_{24}^{9} - 1269888493452\times r_{24}^{6} + 9780\times r_{24}^{3} - 1)^{2}\]
Example 2, \(m_4 = \frac{1}{4} \)

Example

\[K_2 = [G_{12}, G_{21}, G_{13}, G_{31}, G_{14}, G_{41}, G_{34}, G_{43}, G_{24}, G_{42}, G_{23}, G_{32}, \text{nonzero}, \text{ptol}, \text{cm}] \]
Example 2, $m_4 = \frac{1}{4}$

Example

\begin{verbatim}
K2 = [G12, G21, G13, G31, G14, G41, G34, G43, G24, G42, G23, G32, nonzero, ptol, cm]

Ielim = ideal(K2)
R24 = Ielim.elimination_ideal([t, r13, r14, r12, m2])
R24.gen(0).factor()
\end{verbatim}
Example 2, $m_4 = \frac{1}{4}$

Example

\[
K_2 = [G_{12}, G_{21}, G_{13}, G_{31}, G_{14}, G_{41}, G_{34}, G_{43}, G_{24}, G_{42}, G_{23}, G_{32}, \text{nonzero}, \text{ptol}, \text{cm}]
\]

Ielim = ideal(K2)
R24 = Ielim.elimination_ideal([t, r13, r14, r12, m2])
R24.gen(0).factor()

Output:

\[(106570108575\times r_{24}^{18} - 255577677530\times r_{24}^{15} + 63682445617\times r_{24}^{12} + 148432515924\times r_{24}^{9} - 85955082223\times r_{24}^{6} + 5030\times r_{24}^{3} - 1)^2\]
Example 3, Square

Let \(r_{23} = r_{34} = r_{14} = r_{12} \), all the \(m_i = 1 \), diagonals equal \(r_{12}\sqrt{2} \)
Example 3, Square

Let $r_{23} = r_{34} = r_{14} = r_{12}$, all the $m_i = 1$, diagonals equal $r_{12}\sqrt{2}$

Example

$$K3 = [G12, G21, G13, G31, G14, G41, G34, G43, G24, G42, G23, G32, \text{nonzero, ptol, cm}]$$
Example 3, Square

Let $r_{23} = r_{34} = r_{14} = r_{12}$, all the $m_i = 1$, diagonals equal $r_{12}\sqrt{2}$

Example

$$K3 = [G12, G21, G13, G31, G14, G41, G34, G43, G24, G42, G23, G32, \text{nonzero, ptol, cm}]$$

$$Ielim = \text{ideal}(K3)$$

$$R12 = Ielim.\text{elimination_ideal}([t, r13, r24])$$

$$R12.\text{gen}(0).\text{factor}()$$
Example 3, Square

Let $r_{23} = r_{34} = r_{14} = r_{12}$, all the $m_i = 1$, diagonals equal $r_{12}\sqrt{2}$

Example

\begin{verbatim}
K3 = [G12,G21,G13,G31,G14,G41,G34,G43,G24,G42,
 G23,G32,nonzero,ptol,cm]

Ielim = ideal(K3)
R12 = Ielim.elimination_ideal([t,r13,r24])
R12.gen(0).factor()
\end{verbatim}

Output:

$$32r_{12}^6 - 32r_{12}^3 + 7$$
Example 3, Square

Let \(r_{23} = r_{34} = r_{14} = r_{12} \), all the \(m_i = 1 \), diagonals equal \(r_{12}\sqrt{2} \)

Example

\[
K3 = [G_{12}, G_{21}, G_{13}, G_{31}, G_{14}, G_{41}, G_{34}, G_{43}, G_{24}, G_{42}, G_{23}, G_{32}, \text{nonzero}, \text{ptol}, \text{cm}]
\]

\[
\text{Ielim} = \text{ideal}(K3)
\]
\[
\text{R12} = \text{Ielim}.\text{elimination_ideal}([t, r_{13}, r_{24}])
\]
\[
\text{R12}.\text{gen}(0).\text{factor}()
\]

Output:

\[
32r_{12}^6 - 32r_{12}^3 + 7
\]

The generating polynomial for the elimination ideal is not always a perfect square for all co-circular configurations.
Observation

In all our examples, we noticed that the polynomials that were generated by our elimination ideal, had exponents divisible by 3.
Observation

In all our examples, we noticed that the polynomials that were generated by our elimination ideal, had exponents divisible by 3.

However, in only examples 1 and 2, we notice that

$$(I_{AC} + \langle CM, 1 - tr_1r_4r_2r_1, r_2r_1 - 2r_1r_4\rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij})^2 \rangle$$
Observation

In all our examples, we noticed that the polynomials that were generated by our elimination ideal, had exponents divisible by 3.

However, in only examples 1 and 2, we notice that

\[(I_{AC} + \langle CM, 1 - tr_{12}r_{14}r_{24}r_{13}, r_{24}r_{13} - 2r_{12}r_{14}\rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij})^2 \rangle\]

The ideal defined above intersect the rational polynomials in \(r_{ij}\) will equal an elimination ideal generated by a perfect square polynomial, \(f(r_{ij})^2\).
Theorem (BLM)

Given a variety generated by the AC equations for a 4-body problem with fixed mass values together with a nonzero constraint, the generators of the elimination ideals for the distance variables are polynomials in r_{ij}^3 (i.e. have all exponents divisible by 3).
Polynomials in r_{ij}^3

Theorem (BLM)

Given a variety generated by the AC equations for a 4-body problem with fixed mass values together with a nonzero constraint, the generators of the elimination ideals for the distance variables are polynomials in r_{ij}^3 (i.e. have all exponents divisible by 3).

We will now prove this theorem!
Proof of Theorem

Proof:
Recall $k_0 = 1 - tr_{12}r_{13}r_{14}r_{23}r_{24}r_{34}$ in order to force the distance variables to be nonzero.
Proof of Theorem

Proof:
Recall $k_0 = 1 - tr_{12}r_{13}r_{14}r_{23}r_{24}r_{34}$ in order to force the distance variables to be nonzero. Let $a = (r_{12}, r_{13}, r_{14}, r_{23}, r_{24}, r_{34}, t)$ be in the variety defined by $\nabla(C)$, where $C = I_{AC} + \langle k_0 \rangle$ and I_{AC} is the ideal generated by the AC equations for the 4-body problem with fixed values for the masses.
Proof of Theorem

Proof:
Recall $k_0 = 1 - tr_{12}r_{13}r_{14}r_{23}r_{24}r_{34}$ in order to force the distance variables to be nonzero. Let $a = (r_{12}, r_{13}, r_{14}, r_{23}, r_{24}, r_{34}, t)$ be in the variety defined by $\nabla(C)$, where $C = I_{AC} + \langle k_0 \rangle$ and I_{AC} is the ideal generated by the AC equations for the 4-body problem with fixed values for the masses. This implies that a is in $\nabla(C)$.
Proof of Theorem

Proof:
Recall $k_0 = 1 - tr_{12}r_{13}r_{14}r_{23}r_{24}r_{34}$ in order to force the distance variables to be nonzero. Let $a = (r_{12}, r_{13}, r_{14}, r_{23}, r_{24}, r_{34}, t)$ be in the variety defined by $\mathbb{V}(C)$, where $C = I_{AC} + \langle k_0 \rangle$ and I_{AC} is the ideal generated by the AC equations for the 4-body problem with fixed values for the masses. This implies that a is in $\mathbb{V}(C)$.

Let ρ be a primitive cube root of unity.
Proof of Theorem

Proof:
Recall \(k_0 = 1 - tr_{12}r_{13}r_{14}r_{23}r_{24}r_{34} \) in order to force the distance variables to be nonzero. Let \(a = (r_{12}, r_{13}, r_{14}, r_{23}, r_{24}, r_{34}, t) \) be in the variety defined by \(\mathbb{V}(C) \), where \(C = I_{AC} + \langle k_0 \rangle \) and \(I_{AC} \) is the ideal generated by the AC equations for the 4-body problem with fixed values for the masses. This implies that \(a \) is in \(\mathbb{V}(C) \).

Let \(\rho \) be a primitive cube root of unity.

We claim that \(\rho \cdot a := (\rho r_{12}, \rho r_{13}, \rho r_{14}, \rho r_{23}, \rho r_{24}, \rho r_{34}, t) \) is in the variety of \(C \).
Proof of Theorem

The AC equations for the general 4-body problem are in the form

\[G_{ij} = -2m_j S_{ij}(r_{ij}^2) + m_h S_{ih}(r_{jh}^2 - r_{ih}^2 - r_{ij}^2) + m_l S_{il}(r_{jl}^2 - r_{il}^2 - r_{ij}^2) = 0 \]

where \(h, l \in \{1, 2, 3, 4\} \setminus \{i\} \) such that \(h, i, l \) distinct
Proof of Theorem

The AC equations for the general 4-body problem are in the form

\[G_{ij} = -2m_j S_{ij}(r_{ij}^2) + m_h S_{ih}(r_{jh}^2 - r_{ih}^2 - r_{ij}^2) + m_l S_{il}(r_{jl}^2 - r_{il}^2 - r_{ij}^2) = 0 \]

where \(h, l \in \{1, 2, 3, 4\} \setminus \{i\} \) such that \(h, i, l \) distinct and where

\[S_{ij} = \begin{cases}
 r_{ij}^{-3} - 1 & \text{if } j \neq i \\
 0 & \text{if } j = i
\end{cases} \]
Proof of Theorem

Substituting $\rho \cdot a$, $S_{ij} = \rho^{-3} r_{ij}^{-3} - 1 = r_{ij}^{-3} - 1$ by a property of the cube root of unity, and

$$G_{ij} = -2m_j S_{ij}(\rho^2 r_{ij}^2) + m_h S_{ih}(\rho^2 r_{jh}^2 - \rho^2 r_{ih}^2 - \rho^2 r_{ij}^2) + m_l S_{il}(\rho^2 r_{jl}^2 - \rho^2 r_{il}^2 - \rho^2 r_{ij}^2)$$
Proof of Theorem

Substituting $\rho \cdot a$, $S_{ij} = \rho^{-3} r_{ij}^{-3} - 1 = r_{ij}^{-3} - 1$ by a property of the cube root of unity, and

$$G_{ij} = -2m_j S_{ij}(\rho^2 r_{ij}^2) + m_h S_{ih}(\rho^2 r_{jh}^2 - \rho^2 r_{ih}^2 - \rho^2 r_{ij}^2) + m_l S_{il}(\rho^2 r_{jl}^2 - \rho^2 r_{il}^2 - \rho^2 r_{ij}^2)$$

$$= -2m_j \rho^2 S_{ij}(r_{ij}^2) + m_h \rho^2 S_{ih}(r_{jh}^2 - r_{ih}^2 - r_{ij}^2) + m_l \rho^2 S_{il}(r_{jl}^2 - r_{il}^2 - r_{ij}^2)$$
Proof of Theorem

Substituting $\rho \cdot a$, $S_{ij} = \rho^{-3} r_{ij}^{-3} - 1 = r_{ij}^{-3} - 1$ by a property of the cube root of unity, and

$$G_{ij} = -2m_j S_{ij}(\rho^2 r_{ij}^2) + m_h S_{ih}(\rho^2 r_{jh}^2 - \rho^2 r_{ih}^2 - \rho^2 r_{ij}^2) + m_l S_{il}(\rho^2 r_{jl}^2 - \rho^2 r_{il}^2 - \rho^2 r_{ij}^2)$$

$$= -2m_j \rho^2 S_{ij}(r_{ij}^2) + m_h \rho^2 S_{ih}(r_{jh}^2 - r_{ih}^2 - r_{ij}^2) + m_l \rho^2 S_{il}(r_{jl}^2 - r_{il}^2 - r_{ij}^2)$$

$$= \rho^2 [-2m_j S_{ij}(r_{ij}^2) + m_h S_{ih}(r_{jh}^2 - r_{ih}^2 - r_{ij}^2) + m_l S_{il}(r_{jl}^2 - r_{il}^2 - r_{ij}^2)]$$
Proof of Theorem

Substituting $\rho \cdot a$, $S_{ij} = \rho^{-3} r_{ij}^{-3} - 1 = r_{ij}^{-3} - 1$ by a property of the cube root of unity, and

\[
G_{ij} = -2m_j S_{ij}(\rho^2 r_{ij}^2) + m_h S_{ih}(\rho^2 r_{jh}^2 - \rho^2 r_{ih}^2 - \rho^2 r_{ij}^2) + m_l S_{il}(\rho^2 r_{jl}^2 - \rho^2 r_{il}^2 - \rho^2 r_{ij}^2)
\]

\[
= -2m_j \rho^2 S_{ij}(r_{ij}^2) + m_h \rho^2 S_{ih}(r_{jh}^2 - r_{ih}^2 - r_{ij}^2) + m_l \rho^2 S_{il}(r_{jl}^2 - r_{il}^2 - r_{ij}^2)
\]

\[
= \rho^2 [-2m_j S_{ij}(r_{ij}^2) + m_h S_{ih}(r_{jh}^2 - r_{ih}^2 - r_{ij}^2) + m_l S_{il}(r_{jl}^2 - r_{il}^2 - r_{ij}^2)]
\]

\[
= \rho^2 (0) = 0,
\]
Proof of Theorem

Substituting $\rho \cdot a$, $S_{ij} = \rho^{-3}r_{ij}^{-3} - 1 = r_{ij}^{-3} - 1$ by a property of the cube root of unity, and

$$G_{ij} = -2m_j S_{ij}(\rho^2 r_{ij}^2) + m_h S_{ih}(\rho^2 r_{jh}^2 - \rho^2 r_{ih}^2 - \rho^2 r_{ij}^2) +$$

$$m_l S_{il}(\rho^2 r_{jl}^2 - \rho^2 r_{il}^2 - \rho^2 r_{ij}^2)$$

$$= -2m_j \rho^2 S_{ij}(r_{ij}^2) + m_h \rho^2 S_{ih}(r_{jh}^2 - r_{ih}^2 - r_{ij}^2) + m_l \rho^2 S_{il}(r_{jl}^2 - r_{il}^2 - r_{ij}^2)$$

$$= \rho^2 [-2m_j S_{ij}(r_{ij}^2) + m_h S_{ih}(r_{jh}^2 - r_{ih}^2 - r_{ij}^2) + m_l S_{il}(r_{jl}^2 - r_{il}^2 - r_{ij}^2)]$$

$$= \rho^2 (0) = 0,$$

Thus, $\rho \cdot a$ is still a solution for the AC equations.
Proof of Theorem

Similarly, substituting $\rho \cdot a$ into k_0, we have

$$k_0 = 1 - t(\rho r_{12})(\rho r_{13})(\rho r_{23})(\rho r_{24})(\rho r_{14})(\rho r_{34})$$
Proof of Theorem

Similarly, substituting \(\rho \cdot a \) into \(k_0 \), we have

\[
\begin{align*}
 k_0 & = 1 - t(\rho r_{12})(\rho r_{13})(\rho r_{23})(\rho r_{24})(\rho r_{14})(\rho r_{34}) \\
 & = 1 - t(\rho^6)r_{12}r_{13}r_{23}r_{24}r_{14}r_{34}
\end{align*}
\]
Proof of Theorem

Similarly, substituting $\rho \cdot a$ into k_0, we have

$$k_0 = 1 - t(\rho r_{12})(\rho r_{13})(\rho r_{23})(\rho r_{24})(\rho r_{14})(\rho r_{34})$$

$$= 1 - t(\rho^6)r_{12}r_{13}r_{23}r_{24}r_{14}r_{34}$$

Since $\rho^6 = 1$, $\rho \cdot a$ is still a solution for k_0
Proof of Theorem

If \(r_{ij} = \alpha \) is a root of the elimination ideal generator, then \(\alpha \neq 0, \rho \cdot \alpha \neq 0, \) and \(\rho^2 \cdot \alpha \neq 0. \)
Proof of Theorem

If \(r_{ij} = \alpha \) is a root of the elimination ideal generator, then
\(\alpha \neq 0, \ \rho \cdot \alpha \neq 0, \) and \(\rho^2 \cdot \alpha \neq 0. \) Thus, by the Factor Theorem,

\[
(r_{ij} - \alpha)(r_{ij} - \rho \alpha)(r_{ij} - \rho^2 \alpha) \mid f(r_{ij})
\]
Proof of Theorem

If \(r_{ij} = \alpha \) is a root of the elimination ideal generator, then \(\alpha \neq 0, \rho \cdot \alpha \neq 0, \) and \(\rho^2 \cdot \alpha \neq 0. \) Thus, by the Factor Theorem,

\[
(r_{ij} - \alpha)(r_{ij} - \rho\alpha)(r_{ij} - \rho^2\alpha) \mid f(r_{ij})
\]

\[
r_{ij}^3 - r_{ij}^2(\rho^2\alpha + \rho\alpha + \alpha) + r_{ij}(\rho^2\alpha^2 + \rho\alpha^2 + \alpha^2) - (\alpha^3) \mid f(r_{ij})
\]
Proof of Theorem

If \(r_{ij} = \alpha \) is a root of the elimination ideal generator, then \(\alpha \neq 0 \), \(\rho \cdot \alpha \neq 0 \), and \(\rho^2 \cdot \alpha \neq 0 \). Thus, by the Factor Theorem,

\[
(r_{ij} - \alpha)(r_{ij} - \rho\alpha)(r_{ij} - \rho^2\alpha) \mid f(r_{ij})
\]

\[
r_{ij}^3 - r_{ij}^2(\rho^2\alpha + \rho\alpha + \alpha) + r_{ij}(\rho^2\alpha^2 + \rho\alpha^2 + \alpha^2) - (\alpha^3) \mid f(r_{ij})
\]

Note that given a primitive cube root of unity,

\[
\rho^3 - 1 = 0
\]
Proof of Theorem

If \(r_{ij} = \alpha \) is a root of the elimination ideal generator, then \(\alpha \neq 0 \), \(\rho \cdot \alpha \neq 0 \), and \(\rho^2 \cdot \alpha \neq 0 \). Thus, by the Factor Theorem,

\[
(r_{ij} - \alpha)(r_{ij} - \rho \alpha)(r_{ij} - \rho^2 \alpha) \mid f(r_{ij})
\]

\[
r_{ij}^3 - r_{ij}^2(\rho^2 \alpha + \rho \alpha + \alpha) + r_{ij}(\rho^2 \alpha^2 + \rho \alpha^2 + \alpha^2) - (\alpha^3) \mid f(r_{ij})
\]

Note that given a primitive cube root of unity,

\[
\rho^3 - 1 = 0
\]

\[
(\rho - 1)(\rho^2 + \rho + 1) = 0
\]
Proof of Theorem

If \(r_{ij} = \alpha \) is a root of the elimination ideal generator, then \(\alpha \neq 0, \ \rho \cdot \alpha \neq 0, \ \text{and} \ \rho^2 \cdot \alpha \neq 0. \) Thus, by the Factor Theorem,

\[
(r_{ij} - \alpha)(r_{ij} - \rho\alpha)(r_{ij} - \rho^2\alpha) \mid f(r_{ij})
\]

\[
r_{ij}^3 - r_{ij}^2(\rho^2\alpha + \rho\alpha + \alpha) + r_{ij}(\rho^2\alpha^2 + \rho\alpha^2 + \alpha^2) - (\alpha^3) \mid f(r_{ij})
\]

Note that given a primitive cube root of unity,

\[
\rho^3 - 1 = 0
\]

\[
(\rho - 1)(\rho^2 + \rho + 1) = 0
\]

Since \(\rho - 1 \) cannot equal zero, we know \(\rho^2 + \rho + 1 = 0. \)

Notice
Proof of Theorem

If \(r_{ij} = \alpha \) is a root of the elimination ideal generator, then
\(\alpha \neq 0, \ \rho \cdot \alpha \neq 0, \) and \(\rho^2 \cdot \alpha \neq 0. \) Thus, by the Factor Theorem,

\[
(r_{ij} - \alpha)(r_{ij} - \rho\alpha)(r_{ij} - \rho^2\alpha) \mid f(r_{ij})
\]

\[
r_{ij}^3 - r_{ij}^2(\rho^2\alpha + \rho\alpha + \alpha) + r_{ij}(\rho^2\alpha^2 + \rho\alpha^2 + \alpha^2) - (\alpha^3) \mid f(r_{ij})
\]

Note that given a primitive cube root of unity,

\[
\rho^3 - 1 = 0
\]

\[
(\rho - 1)(\rho^2 + \rho + 1) = 0
\]

Since \(\rho - 1 \) cannot equal zero, we know \(\rho^2 + \rho + 1 = 0. \) Notice

\[
(\rho^2\alpha + \rho\alpha + \alpha) = \alpha(\rho^2 + \rho + 1)
\]
Proof of Theorem

If \(r_{ij} = \alpha \) is a root of the elimination ideal generator, then \(\alpha \neq 0, \ \rho \cdot \alpha \neq 0, \) and \(\rho^2 \cdot \alpha \neq 0. \) Thus, by the Factor Theorem,

\[
(r_{ij} - \alpha)(r_{ij} - \rho \alpha)(r_{ij} - \rho^2 \alpha) \mid f(r_{ij})
\]

\[
r_{ij}^3 - r_{ij}^2(\rho^2 \alpha + \rho \alpha + \alpha) + r_{ij}(\rho^2 \alpha^2 + \rho \alpha^2 + \alpha^2) - (\alpha^3) \mid f(r_{ij})
\]

Note that given a primitive cube root of unity,

\[
\rho^3 - 1 = 0
\]

\[
(\rho - 1)(\rho^2 + \rho + 1) = 0
\]

Since \(\rho - 1 \) cannot equal zero, we know \(\rho^2 + \rho + 1 = 0. \) Notice

\[
(\rho^2 \alpha + \rho \alpha + \alpha) = \alpha(\rho^2 + \rho + 1)
\]

\[
(\rho^2 \alpha^2 + \rho \alpha^2 + \alpha^2) = \alpha^2(\rho^2 + \rho + 1)
\]
\[r_{ij}^3 - r_{ij}^2(\alpha(\rho^2 + \rho + 1)) + r_{ij}(\alpha^2(\rho^2 + \rho + 1)) - (\alpha^3) \mid f(r_{ij}) \]
\[r_{ij}^3 - r_{ij}^2(\alpha(\rho^2 + \rho + 1)) + r_{ij}(\alpha^2(\rho^2 + \rho + 1)) - (\alpha^3) \mid f(r_{ij}) \]

Hence \((r_{ij}^3 - \alpha^3) \mid f(r_{ij}).\)
\[r_{ij}^3 - r_{ij}^2(\alpha(\rho^2 + \rho + 1)) + r_{ij}(\alpha^2(\rho^2 + \rho + 1)) - (\alpha^3) \mid f(r_{ij}) \]

Hence \((r_{ij}^3 - \alpha^3) \mid f(r_{ij}) \). Therefore, \(f(r_{ij}) \) will be a polynomial in \(r_{ij}^3 \). Q.E.D.
Corollary

Given a variety generated by $\overline{I_{AC}} + \langle p, k_0, r_{14} - r_{34}, r_{12} - r_{23} \rangle$, the generators of the elimination ideals for the distance variables are polynomials in r_{ij}^3 (i.e. have all exponents divisible by 3).
Corollary

Given a variety generated by $\overline{I_{AC}} + \langle p, k_0, r_{14} - r_{34}, r_{12} - r_{23} \rangle$, the generators of the elimination ideals for the distance variables are polynomials in r_{ij}^3 (i.e. have all exponents divisible by 3).

Now we wish to set up the conditions necessary to have a co-circular kite configuration. Recall
Corollary

Given a variety generated by $I_{AC} + \langle p, k_0, r_{14} - r_{34}, r_{12} - r_{23} \rangle$, the generators of the elimination ideals for the distance variables are polynomials in r_{ij}^3 (i.e. have all exponents divisible by 3).

Now we wish to set up the conditions necessary to have a co-circular kite configuration. Recall

$$p = r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34}$$

in order to satisfy the co-circular condition and include
Corollary

Given a variety generated by \(\overline{I_{AC}} + \langle p, k_0, r_{14} - r_{34}, r_{12} - r_{23} \rangle \), the generators of the elimination ideals for the distance variables are polynomials in \(r_{ij}^3 \) (i.e. have all exponents divisible by 3).

Now we wish to set up the conditions necessary to have a co-circular kite configuration. Recall

\[
p = r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34}
\]

in order to satisfy the co-circular condition and include

\[
\begin{align*}
r_{14} - r_{34} \\
r_{12} - r_{23}
\end{align*}
\]

in order to set up the geometry of a kite.
Proof of Corollary

Proof:
Proof of Corollary

Proof:
Using a similar argument as Theorem BLM, let
\(a = (r_{12}, r_{13}, r_{23}, r_{24}, r_{14}, r_{34}, t) \) be in the variety defined by \(\mathbb{V}(D) \),
where \(D = I_{AC} + \langle k_0 \rangle + \langle p \rangle + \langle r_{14} - r_{34} \rangle + \langle r_{12} - r_{23} \rangle \).
Proof of Corollary

Proof:
Using a similar argument as Theorem BLM, let
\(a = (r_{12}, r_{13}, r_{23}, r_{24}, r_{14}, r_{34}, t) \) be in the variety defined by \(\mathbb{V}(D) \),
where \(D = I_{AC} + \langle k_0 \rangle + \langle p \rangle + \langle r_{14} - r_{34} \rangle + \langle r_{12} - r_{23} \rangle \). This implies
\(a \) is in the variety of \(D \).
Proof of Corollary

Proof:
Using a similar argument as Theorem BLM, let $a = (r_{12}, r_{13}, r_{23}, r_{24}, r_{14}, r_{34}, t)$ be in the variety defined by $\mathbb{V}(D)$, where $D = I_{AC} + \langle k_0 \rangle + \langle p \rangle + \langle r_{14} - r_{34} \rangle + \langle r_{12} - r_{23} \rangle$. This implies a is in the variety of D.
Now we will prove that $\rho \cdot a := (\rho r_{12}, \rho r_{13}, \ldots, \rho r_{34}, t)$ where ρ is a cube root of unity is also in the variety of D.
Substituting $\rho \cdot a$ into p, we have
Substituting $\rho \cdot a$ into p, we have

$$p = (\rho r_{13})(\rho r_{24}) - (\rho r_{14})(\rho r_{23}) - (\rho r_{12})(\rho r_{34})$$
Substituting $\rho \cdot a$ into p, we have

$$p = (\rho r_{13})(\rho r_{24}) - (\rho r_{14})(\rho r_{23}) - (\rho r_{12})(\rho r_{34})$$

$$= \rho^2 (r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34})$$
Substituting $\rho \cdot a$ into p, we have

$$p = (\rho r_{13})(\rho r_{24}) - (\rho r_{14})(\rho r_{23}) - (\rho r_{12})(\rho r_{34})$$

$$= \rho^2(r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34})$$

$$= \rho^2(0) = 0$$
Substituting $\rho \cdot a$ into p, we have

\begin{align*}
p &= (\rho r_{13})(\rho r_{24}) - (\rho r_{14})(\rho r_{23}) - (\rho r_{12})(\rho r_{34}) \\
&= \rho^2(r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34}) \\
&= \rho^2(0) = 0
\end{align*}

Thus $\rho \cdot a$ substituted into p is still a root.
Also substituting $\rho \cdot a$ into the kite conditions, we have
Also substituting $\rho \cdot a$ into the kite conditions, we have

$$\rho r_{14} - \rho r_{34}$$
Also substituting $\rho \cdot a$ into the kite conditions, we have

$$\rho r_{14} - \rho r_{34} = \rho (r_{14} - r_{34})$$
Also substituting $\rho \cdot a$ into the kite conditions, we have

$$\rho r_{14} - \rho r_{34} = \rho (r_{14} - r_{34})$$

$$= \rho (0) = 0$$

with a similar result for $r_{12} - r_{23}$.
Also substituting $\rho \cdot a$ into the kite conditions, we have

$$\rho r_{14} - \rho r_{34} = \rho(r_{14} - r_{34})$$

$$= \rho(0) = 0$$

with a similar result for $r_{12} - r_{23}$.

The rest of this proof follows from the proof of Theorem BLM. Q.E.D.
Reminders

Co-circular Kite Constraints:
Reminders

Co-circular Kite Constraints:

\[r_{23} = r_{12} \]
\[r_{34} = r_{14} \]
\[m_1 = m_3 \]
Reminders

Co-circular Kite Constraints:

\[r_{23} = r_{12} \]
\[r_{34} = r_{14} \]
\[m_1 = m_3 \]
\[k_0 = 1 - tr_{12}r_{13}r_{24}r_{14} \]
Reminders

Co-circular Kite Constraints:

\[r_{23} = r_{12} \]
\[r_{34} = r_{14} \]
\[m_1 = m_3 \]
\[k_0 = 1 - tr_{12}r_{13}r_{24}r_{14} \]
\[\text{Ptol} = r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34} \]
Reminders

Co-circular Kite Constraints:

\[
\begin{align*}
 r_{23} & = r_{12} \\
 r_{34} & = r_{14} \\
 m_1 & = m_3 \\
 k_0 & = 1 - tr_{12}r_{13}r_{24}r_{14} \\
 \text{Ptol} & = r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34} \\
 & = r_{13}r_{24} - 2r_{14}r_{12}
\end{align*}
\]
Reminders

Co-circular Kite Constraints:

\[
\begin{align*}
 r_{23} &= r_{12} \\
 r_{34} &= r_{14} \\
 m_1 &= m_3 \\
 k_0 &= 1 - tr_{12}r_{13}r_{24}r_{14} \\
 \text{Ptol} &= r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34} \\
 &= r_{13}r_{24} - 2r_{14}r_{12} \\
 \overline{CM} &= (-2)r_{13}^2(r_{12}^4 - 2r_{12}^2r_{14}^2 + r_{14}^4 - 2r_{12}^2r_{24}^2 + r_{13}^2r_{24}^2 - 2r_{14}^2r_{24}^2 + r_{24}^4)
\end{align*}
\]
Perfect Squares

Observation:

\[
(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14} \rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij})^2 \rangle
\]
Perfect Squares

Observation:

\[
(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}\rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij})^2 \rangle
\]

\[
r_{24}^2 = r_{12}^2 + r_{14}^2
\]
Observation:

\[(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14} \rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij})^2 \rangle\]

\[r_{24}^2 = r_{12}^2 + r_{14}^2\]

When we add \(r_{24}^2 = r_{12}^2 + r_{14}^2\), we get

\[(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij}) \rangle\]
Example 1, \(m_2 = \frac{1}{5} \)

Example

\[
K = \{G12, G21, G13, G31, G14, G41, G34, G43, G24, G42, G23, G32, \text{nonzero, ptol, cm}\}
\]

\[
\text{Ielim} = \text{ideal}(K)
\]

\[
\text{R24} = \text{Ielim.eliminationIdeal}([t, r12, r14, r13, m4])
\]

\[
\text{R24.gen(0).factor()}
\]

Output:

\[
(2230918027632*\text{r24}^24 - 1557072438768*\text{r24}^21 - 6057772562340*\text{r24}^18 + 1636987206176*\text{r24}^15 + 4385658414560*\text{r24}^12 - 839052304212*\text{r24}^9 - 1269888493452*\text{r24}^6 + 9780*\text{r24}^3 - 1)^2
\]
Example 1, $m_2 = \frac{1}{5}$

Example

\[
K = [G_{12}, G_{21}, G_{13}, G_{31}, G_{14}, G_{41}, G_{34}, G_{43}, G_{24}, G_{42}, G_{23}, G_{32}, \text{nonzero}, \text{ptol}, \text{cm}, \text{pythag}]
\]

\[
\text{Ielim} = \text{ideal}(K)
\]

\[
\text{R}_{24} = \text{Ielim} . \text{elimination_ideal}([t, r_{12}, r_{14}, r_{13}, m_4])
\]

\[
\text{R}_{24} . \text{gen}(0) . \text{factor}()
\]

Output:

\[
2230918027632 \times r_{24}^{24} - 1557072438768 \times r_{24}^{21} - 6057772562340 \times r_{24}^{18} + 1636987206176 \times r_{24}^{15} + 4385658414560 \times r_{24}^{12} - 839052304212 \times r_{24}^{9} - 1269888493452 \times r_{24}^{6} + 9780 \times r_{24}^{3} - 1
\]
Example 2, $m_4 = \frac{1}{4}$

Example

\[
K3 = [G_{12}, G_{21}, G_{13}, G_{31}, G_{14}, G_{41}, G_{34}, G_{43}, G_{24}, G_{42}, G_{23}, G_{32}, \text{nonzero}, \text{ptol}, \text{cm}]
\]

Ielim = ideal(K3)

j = Ielim.elimination_ideal([t, r_{13}, r_{14}, r_{12}, m2])

j.gen(0).factor()

Output:

\[
(106570108575 \times r_{24}^{18} - 255577677530 \times r_{24}^{15} + 63682445617 \times r_{24}^{12} + 148432515924 \times r_{24}^{9} - 85955082223 \times r_{24}^{6} + 5030 \times r_{24}^{3} - 1)^2
\]
Example 2, \(m_4 = \frac{1}{4} \)

Example

\[
K_3 = [G_{12}, G_{21}, G_{13}, G_{31}, G_{14}, G_{41}, G_{34}, G_{43}, G_{24}, G_{42}, G_{23}, G_{32}, \text{nonzero}, \text{ptol}, \text{cm}, \text{pythag}]
\]

\[
I_{\text{elim}} = \text{ideal}(K_3)
\]

\[
j = I_{\text{elim}}.\text{elimination}_\text{ideal}([t, r_{13}, r_{14}, r_{12}, m_2])
\]

\[
j\.gen(0).\text{factor}()
\]

Output:

\[
106570108575r_{24}^{18} - 255577677530r_{24}^{15} + 63682445617r_{24}^{12} + 148432515924r_{24}^{9} - 85955082223r_{24}^{6} + 5030r_{24}^{3} - 1
\]
Observations

More observations:

\[(r_{14}^2 + r_{12}^2 - r_{24}^2)^2 \in \langle CM, k_0, r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34}, r_{12} - r_{23}, r_{14} - r_{34} \rangle\]
Observations

More observations:

\[(r_{14}^2 + r_{12}^2 - r_{24}^2)^2 \in \langle CM, k_0, r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34}, r_{12} - r_{23},
\]
\[r_{14} - r_{34}\rangle\]

\[
\overline{CM} = (-2)r_{13}^2(r_{12}^4 - 2r_{12}^2r_{14}^2 + r_{14}^4 - 2r_{12}^2r_{24}^2 + r_{13}^2r_{24}^2
\]
\[-2r_{14}^2r_{24}^2 + r_{24}^4)\]
Observations

More observations:

\[(r^2_{14} + r^2_{12} - r^2_{24})^2 \in \langle CM, k_0, r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34}, r_{12} - r_{23}, r_{14} - r_{34} \rangle \]

\[
CM = \left(-2\right)r^2_{13}\left(r^4_{12} - 2r^2_{12}r^2_{14} + r^4_{14} - 2r^2_{12}r^2_{24} + r^2_{13}r^2_{24} - 2r^2_{14}r^2_{24} + r^4_{24}\right)
\]

\[
CM_0 = r^4_{12} - 2r^2_{12}r^2_{14} + r^4_{14} - 2r^2_{12}r^2_{24} + r^2_{13}r^2_{24} - 2r^2_{14}r^2_{24} + r^4_{24}
\]
More observations:

\[(r_{14}^2 + r_{12}^2 - r_{24}^2)^2 \quad \in \quad \langle CM, k_0, r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34}, r_{12} - r_{23}, r_{14} - r_{34} \rangle \]

\[CM = (-2)r_{13}^2(r_{12}^4 - 2r_{12}^2r_{14}^2 + r_{14}^4 - 2r_{12}^2r_{24}^2 + r_{13}^2r_{24}^2 - 2r_{14}^2r_{24}^2 + r_{24}^4) \]

\[CM_0 = r_{12}^4 - 2r_{12}^2r_{14}^2 + r_{14}^4 - 2r_{12}^2r_{24}^2 + r_{13}^2r_{24}^2 - 2r_{14}^2r_{24}^2 + r_{24}^4 \]

\[(r_{14}^2 + r_{12}^2 - r_{24}^2)^2 = CM_0 - (r_{13}r_{24} - 2r_{12}r_{14})(r_{13}r_{24} + 2r_{12}r_{14}) \]
Observations

More observations:

\[(r_{14}^2 + r_{12}^2 - r_{24}^2)^2 \in \langle CM, k_0, r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34}, r_{12} - r_{23},
 r_{14} - r_{34} \rangle\]

\[\overline{CM} = (-2)r_{13}^2(r_{12}^4 - 2r_{12}^2r_{14}^2 + r_{14}^4 - 2r_{12}^2r_{24}^2 + r_{13}^2r_{24}^2 - 2r_{14}^2r_{24}^2 + r_{24}^4)\]

\[CM_0 = r_{12}^4 - 2r_{12}^2r_{14}^2 + r_{14}^4 - 2r_{12}^2r_{24}^2 + r_{13}^2r_{24}^2 - 2r_{14}^2r_{24}^2 + r_{24}^4\]

\[(r_{14}^2 + r_{12}^2 - r_{24}^2)^2 = CM_0 - (r_{13}r_{24} - 2r_{12}r_{14})(r_{13}r_{24} + 2r_{12}r_{14})\]

\[r_{14}^2 + r_{12}^2 - r_{24}^2 \not\in \langle CM, k_0, r_{13}r_{24} - r_{14}r_{23} - r_{12}r_{34}, r_{12} - r_{23},
 r_{14} - r_{34} \rangle\]
Theorem

Definition (Radical Ideal)

The radical of an ideal \(I \) is the ideal
\[
\sqrt{I} = \{ f \mid f^n \in I \text{ for some } n \geq 1 \}
\]
and we call \(I \) a radical ideal if and only if \(I = \sqrt{I} \).
Theorem

Definition (Radical Ideal)

The radical of an ideal I is the ideal
\[\sqrt{I} = \{ f | f^n \in I \text{ for some } n \geq 1 \} \] and we call I a radical ideal if and only if $I = \sqrt{I}$.

We notice that when we have a fixed value for m_2 or m_4,

\[(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14} \rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij})^2 \rangle \quad (1) \]
\[(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij}) \rangle \quad (2) \]
Definition (Radical Ideal)

The radical of an ideal I is the ideal
\[\sqrt{I} = \{ f \mid f^n \in I \text{ for some } n \geq 1 \} \]
and we call I a radical ideal if and only if $I = \sqrt{I}$.

We notice that when we have a fixed value for m_2 or m_4,

\begin{align*}
(\overline{I_{AC}} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14} \rangle) \cap \mathbb{Q}[r_{ij}] &= \langle f(r_{ij})^2 \rangle \quad (1) \\
(\overline{I_{AC}} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle) \cap \mathbb{Q}[r_{ij}] &= \langle f(r_{ij}) \rangle \quad (2)
\end{align*}

Theorem (Co-circular Kite Radical Ideals)

Except for a finite number of special cases, (2) is the radical ideal of (1)
Proof of Theorem

Theorem (Conditions for a Radical Ideal [Cox, Little, O’Shea])

Let $I \subset \mathbb{C}[x_1, \ldots, x_n]$ be a zero-dimensional ideal. For each $i = 1, \ldots, n$, let p_i be the unique monic generator of $I \cap \mathbb{C}[x_i]$, and let $p_{i,\text{red}}$ be the square-free part of p_i. Then

$$\sqrt{I} = I + \langle p_{1,\text{red}}, \ldots, p_{n,\text{red}} \rangle.$$
Proof of Theorem

Theorem (Conditions for a Radical Ideal [Cox, Little, O’Shea])

Let $I \subset \mathbb{C}[x_1, \ldots, x_n]$ be a zero-dimensional ideal. For each $i = 1, \ldots, n$, let p_i be the unique monic generator of $I \cap \mathbb{C}[x_i]$, and let $p_{i,\text{red}}$ be the square-free part of p_i. Then

$$\sqrt{I} = I + \langle p_{1,\text{red}}, \ldots, p_{n,\text{red}} \rangle.$$

Note that if $p_i = p_{i,\text{red}}$ for all i, then $I = \sqrt{I}$.
Mass Relation

\[
\left(\overline{I_{AC}} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle \right) \cap \mathbb{Q}[m_2, m_4] = \langle M(m_2, m_4) \rangle
\]
Mass Relation

\[
(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle) \cap \mathbb{Q}[m_2, m_4] = \langle M(m_2, m_4) \rangle
\]
Mass Relation

\[
\left(\overline{I_{AC}} + \langle \overline{CM}, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle \right) \cap \mathbb{Q}[m_2, m_4] = \langle M(m_2, m_4) \rangle
\]
Discriminant

Definition (Resultant)

The resultant $R(P, Q, x)$ of two univariate polynomials P and Q in x is a polynomial function of their coefficients that is zero if and only if the two polynomials have common roots in an algebraically closed field containing the coefficients.
Discriminant

Definition (Resultant)

The resultant $R(P, Q, x)$ of two univariate polynomials P and Q in x is a polynomial function of their coefficients that is zero if and only if the two polynomials have common roots in an algebraically closed field containing the coefficients.

- Recall that the discriminant is defined as $D(h) = R(h, h', x)$. Our notation for the discriminant will be $D(h)$.
Discriminant

Definition (Resultant)

The resultant $R(P, Q, x)$ of two univariate polynomials P and Q in x is a polynomial function of their coefficients that is zero if and only if the two polynomials have common roots in an algebraically closed field containing the coefficients.

- Recall that the discriminant is defined as $D(h) = R(h, h', x)$. Our notation for the discriminant will be $D(h)$.
- A polynomial has a root with multiplicity greater than one if and only if its discriminant is zero.
Checking for Multiplicity

Now we compute the elimination ideal

$$(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle) \cap \mathbb{Q}[r_{ij}, m_2, m_4] = J$$
Checking for Multiplicity

Now we compute the elimination ideal

$$(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle) \cap \mathbb{Q}[r_{ij}, m_2, m_4] = J$$

- M and $f(m_4, r_{ij})$ are generators of J
Checking for Multiplicity

Now we compute the elimination ideal

\[(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle) \cap \mathbb{Q}[r_{ij}, m_2, m_4] = J\]

- \(M\) and \(f(m_4, r_{ij})\) are generators of \(J\)
- If \(f\) is square-free for all of the \(r_{ij}\) variables, then by the Conditions for a Radical Ideal theorem,

\[(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij}) \rangle\]

is a radical ideal.
Checking for Multiplicity

Now we compute the elimination ideal

\[(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle) \cap \mathbb{Q}[r_{ij}, m_2, m_4] = J\]

- M and $f(m_4, r_{ij})$ are generators of J

- If f is square-free for all of the r_{ij} variables, then by the Conditions for a Radical Ideal theorem,

\[(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij}) \rangle\]

is a radical ideal.

- For each of the r_{ij}s, we compute J and $D(f, r_{ij}) = g(m_4)$
Checking for Multiplicity

We check each factor of \(D(f, r_{ij}) = g(m_4) \) that could have a positive real root \(a \) that would make \(g(a) = 0 \)
Checking for Multiplicity

We check each factor of \(D(f, r_{ij}) = g(m_4) \) that could have a positive real root \(a \) that would make \(g(a) = 0 \)

Example \((D(f, r_{12}))\)

\[
(4 \cdot m^4 - 1)^9 \ast (4 \cdot m^4 + 1)^9 \ast (m^4 + 1)^{12} \ast m^{120} \ast (m^4 + 10 \cdot m^4 + 39 \cdot m^4 + 72 \cdot m^4 + 153 \cdot m^6 + 582 \cdot m^5 + 1373 \cdot m^4 + 1676 \cdot m^3 + 2979 \cdot m^2 + 4158 \cdot m + 3969)^3 \ast (413343 \cdot m^4 + 648324 \cdot m^3 + 844720 \cdot m^2 - 2064960 \cdot m + 1804032 \cdot m^2 - 104976)^3 \ast (63700992 \cdot m^4 - 445906944 \cdot m^3 + 3327229804571210891151)^6
\]
Example 2, $m_4 = \frac{1}{4}$

Example

\[K_2 = [G_{12}, G_{21}, G_{13}, G_{31}, G_{14}, G_{41}, G_{34}, G_{43}, G_{24}, G_{42}, G_{23}, G_{32}, \text{nonzero}, \text{ptol}, \text{cm}, \text{pythag}] \]

\[\text{Ielim} = \text{ideal}(K_2) \]
\[\text{R}24 = \text{Ielim}.\text{elimination_ideal}([t, r_{13}, r_{14}, r_{12}, m_2]) \]
\[\text{R}24.\text{gen}(0).\text{factor}() \]

Output:

\[106570108575 \ast r_{24}^{18} - 255577677530 \ast r_{24}^{15} + 63682445617 \ast r_{24}^{12} + 148432515924 \ast r_{24}^9 - 85955082223 \ast r_{24}^6 + 5030 \ast r_{24}^3 - 1 \]
Conclusion

We were able to use Sturm’s theorem in Sage to determine that there are only a finite number of positive real roots (one of which is $\frac{1}{4}$) for each factor of $D(f, r_{ij}) = g(m_4)$ for each r_{ij}.
We were able to use Sturm’s theorem in Sage to determine that there are only a finite number of positive real roots (one of which is $\frac{1}{4}$) for each factor of $D(f, r_{ij}) = g(m_4)$ for each r_{ij}.

Therefore except for a finite number of special cases, $(\overline{I_{AC}} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle) \cap \mathbb{Q}[r_{ij}]$ is a radical ideal. Q.E.D.
Future Work

\[(\overline{I_{AC}} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14} \rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij})^2 \rangle\]

\[(\overline{I_{AC}} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij}) \rangle\]
Future Work

\[
\left(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14} \rangle \right) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij})^2 \rangle \\
\left(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle \right) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij}) \rangle
\]

Work that will help prove the above:
Future Work

\[
(\overline{I_{AC}} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}\rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij})^2\rangle \\
(\overline{I_{AC}} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2\rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij})\rangle
\]

Work that will help prove the above:

\[
(\overline{I_{AC}} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2\rangle) \cap \mathbb{Q}[r_{ij}]
\]

is a radical ideal
Future Work

\[(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14} \rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij})^2 \rangle\]
\[(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle) \cap \mathbb{Q}[r_{ij}] = \langle f(r_{ij}) \rangle\]

Work that will help prove the above:

\[(I_{AC} + \langle CM, k_0, r_{13}r_{24} - 2r_{12}r_{14}, r_{14}^2 + r_{12}^2 - r_{24}^2 \rangle) \cap \mathbb{Q}[r_{ij}]\]

is a radical ideal, and

\[(r_{14}^2 + r_{12}^2 - r_{24}^2)^2 = CM_0 - (r_{13}r_{24} - 2r_{12}r_{14})(r_{13}r_{24} + 2r_{12}r_{14})\]

Acknowledgements

Mahalo to our funders and everyone involved in PURE Math, especially Dr. John Little, Dr. Roberto Pelayo, and Chris O’Neill.