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Outline

Information, channel security, noninterference

Encryption and decryption

Cryptanalysis and notions of secrecy

Cyphers and modes of operation

Key establishment

What did we learn?
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Outline

Information, channel security, noninterference

Concepts of information and of information security

Areas of information security

Covert channels and Trojan horse

Security models and noninterference

Encryption and decryption

Cryptanalysis and notions of secrecy

Cyphers and modes of operation

Key establishment

What did we learn?
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Recall from Lecture 1

Information security

◮ secrecy: "bad information flows don’t happen"

◮ authenticity: "good information flows do happen"

In network computation

◮ all information flow constraints are security properties
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We could also say

Information security

◮ confidentiality: "bad information flows don’t . . . "

◮ integrity: "good information flows do. . . "

Although not synonymous

◮ secrecy, confidentiality and privacy

◮ authenticity and integrity

are used interchanteably
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Security speak
(overheard at a security conference)

Speaker: Isn’t it terrifying that on the Internet we have

no privacy?

Charlie: You mean confidentiality. Get your terms

straight.

Radia: Why do security types insist on inventing

their own language?

Mike: It’s a denial-of-service attack.

Charlie: You mean chosen cyphertext attack. . .
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Variants
(a possible assignment of meanings)

Bad information flows

◮ secret information: disclosure prevented
◮ e.g., by cryptography

◮ private information: disclosure when authorized
◮ information privately owned

◮ confidential information: disclosure restricted
◮ penalized when detected
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Variants
(a possible assignment of meanings)

Bad information flows about resources

◮ secret funds: it is secret that they exist
◮ secret ceremony, secret lover. . .

◮ private funds: access is restricted
◮ private ceremony, private resort. . .

◮ confidential report: some details confidential
◮ content can be disclosed, but not the source
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Variants
(a possible assignment of meanings)

Good information flows

◮ authenticity of a painting, of a letter, of testimony
◮ the source of the message is who it says it is

◮ integrity of evidence, of a person
◮ the content of the message not been altered,

tampered with, compromised
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What is information?
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What is information?

Before a coin flip, the outcome is unknown.

0 1
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What is information?

Before a coin flip, the outcome is unknown.

0 1

A coin flip yields exactly 1 bit of information.
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What is information?

Before two coin flips, the outcome is even more unknown.

00 01 11 11

Two coin flips give exactly 2 bits of information.
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What is information?

Rolling a fair 4-sided die gives the same amount of

information like flipping 2 fair coins.
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What is information?

Let’s get formal (but don’t take it too seriously yet).
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What is information?

Let’s get formal (but don’t take it too seriously yet).

Definition
A source is a finite or countable set X given with a

probability distribution.
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What is information?

Let’s get formal (but don’t take it too seriously yet).

Definition
A source is a finite or countable set X given with a

probability distribution.

A probability distribution over X is a just function

ProbX : X −→ [0, 1] such that

∑

x∈X
Prob(x) = 1
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What is information?

Examples

◮ coin, two coins, dice. . .
◮ What will be the outcome?
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What is information?

Examples

◮ coin, two coins, dice. . .
◮ What will be the outcome?

◮ language
◮ What will be the next word that I’ll say?
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What is information?

Examples

◮ coin, two coins, dice. . .
◮ What will be the outcome?

◮ language
◮ What will be the next word that I’ll say?

◮ any observable parameter
◮ Who will be the next US president?
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What is information?

Definition
Information is the average length of the binary words

needed to express the outcome of sampling a source X.
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What is information?

Definition
Information is the average length of the binary words

needed to express the outcome of sampling a source X.

It is denoted H(X).
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What is information?

Definition
Information is the average length of the binary words

needed to express the outcome of sampling a source X.

It is denoted H(X).

Examples

◮ H(coin) = 1

◮ H(2 coins) = H(4-sided die) = 2

◮ Biased coins and dice give less information.

◮ If the outcome of an experiment X is certain,

then H(X) = 0.
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Areas of information security

Just like

◮ information is a special kind of a resource,

◮ a message is a special kind of information sample

resource security

information security

cryptography
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Information gathering

Information can be acquired by

◮ observing accesses to resources

◮ receiving messages
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Information gathering

Information can be acquired by

◮ observing accesses to resources

◮ receiving messages

Accordingly, we subdivide information security into:

◮ observation security, or channels security, and

◮ message security, or cryptography.
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Observing confidential information

◮ Information flows through channels.
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Observing confidential information

◮ Information flows through channels.

◮ Confidential information leaks through

covert channels.
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Trojan horse

is a covert channel installed through social engineering

Figure: A channel is concealed in a resource
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Trojan horse

is a covert channel installed through social engineering

Figure: A channel is concealed in a resource.
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State machines

Definition
A state machine is a map (pair of maps)

Q × I
〈nx ,ev〉
−−−−−−→ Q ×O

where Q, I,O are finite sets, representing

◮ Q — states

◮ I — input alphabet

◮ O — output alphabet

◮ Q × I
nx−−→ Q — next state

◮ Q × I
ev−−→ O — output eval.
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State machines

Definition
A state machine is a map (pair of maps)

Q × I
〈nx ,ev〉
−−−−−−→ Q ×O

where Q, I,O are finite sets, representing

◮ Q — states

◮ I — input alphabet

◮ O — output alphabet

◮ Q × I
nx−−→ Q — next state

◮ Q × I
ev−−→ O — output eval.

Notation
A state machine is denoted by the name of its state set Q.



Security and
Trust II:

Information
Assurance

Peter-Michael
Seidel

Channel security

Information

Areas of inf. sec.

Trojan horse

Noninterference

Encryption

Cryptanalysis

Modes

Generating keys

Lessons

Running state machines

Inputs and outputs

The inputs and the outputs of state machines are lists

from I and O.

For any set X , the set of lists

X ∗ =
{
〈x1, x2, . . . , xn〉 ∈ X n | n ∈ N

}

is generated from the empty list by prepending

1
〈〉
−→ X ∗

X × X ∗
@−→ X ∗
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Running state machines

Inputs and outputs

The inputs and the outputs of state machines are lists

from I and O.

For any set X , the set of lists in it

X ∗ =
{
〈x1, x2, . . . , xn〉 ∈ X n | n ∈ N

}

can be generated from the empty list by prepending

1
〈〉
−→ X ∗

X × X ∗
@−→ X ∗〈

x , 〈y1, y2 . . . , yn〉
〉
7→ 〈x , y1, y2 . . . , yn〉
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Running state machines

Input-output maps

At any state q, the state machine Q induces a map

I∗
Evq

−−−→ O∗

where

Evq〈〉 = 〈〉
Evq(x@ys) = evq(x) @ Evnxq(x)(ys)

for x ∈ I and ys ∈ I∗
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Multi level machines

Definition
A multi level machine is a map

Q × I
〈nx ,ev〉
−−−−−−→ Q ×O

where Q, I,O are finite sets, representing

◮ Q — states

◮ I =
∑
ℓ∈L Iℓ — disjoint union of input alphabets

◮ O — output alphabet
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Hi-Lo machines

Definition
A Hi-Lo machine is a map

Q × I
〈nx ,ev〉
−−−−−−→ Q ×O

where Q, I,O are finite sets, representing

◮ Q — states

◮ I = IH + IL — disjoint union input alphabets

◮ O — output alphabet
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Hi-Lo machines

Remark
A Hi-Lo-machine is just a multi level machine with just two

levels L = {L < H}.
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Hi-Lo machines

Notation
The restriction (or purge) (−)L : I∗ −→ I∗

L
is defined

〈〉L = 〈〉

(x@ys)L =


x@ysL if x ∈ IL

ysL otherwise



Security and
Trust II:

Information
Assurance

Peter-Michael
Seidel

Channel security

Information

Areas of inf. sec.

Trojan horse

Noninterference

Encryption

Cryptanalysis

Modes

Generating keys

Lessons

Hi-Lo machines

Notation
The restriction (or purge) (−)L : I∗ −→ I∗

L
is defined

〈〉L = 〈〉

(x@ys)L =


x@ysL if x ∈ IL

ysL otherwise

The outputs of Lo’s actions are:

Ev
q

L
〈〉 = 〈〉

Ev
q

L
(x@ys) =


evq(x) @ Ev

nxq(x)

L
(ys) if x ∈ IL

Ev
nxq(x)

L
(ys) otherwise
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Covert channels and Trojans

Definition
We say that the Hi-Lo machine Q has a covert channel if

it has a state q such that

◮ xsL = ysL, but

◮ Ev
q

L
(xs) , Ev

q

L
(ys)

holds for some input lists xs, ys ∈ I∗.
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Covert channels and Trojans

Definition
We say that the Hi-Lo machine Q has a covert channel if

it has a state q such that

◮ xsL = ysL, but

◮ Ev
q

L
(xs) , Ev

q

L
(ys)

holds for some input lists xs, ys ∈ I∗.
The subject Hi in a Hi-Lo machine with a covert channel

is often called a Trojan (horse).
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Covert channels and Trojans

Homework
Specify a simple Hi-Lo machine with a covert channel.
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Noninterference
(Goguen-Meseguer)

Definition
We say that the Hi-Lo machine Q satisfies the

noninterference requirement if it has no covert channels,

i.e.

xsL = ysL =⇒ Ev
q

L
(xs) = Ev

q

L
(ys)

holds for all states q and all inputs xs, ys ∈ I∗.
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Noninterference
(Goguen-Meseguer)

Remark
The no-write-down condition

◮ prevents Hi from sending to Lo

◮ any publicly visible signals (messages).
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Noninterference
(Goguen-Meseguer)

Remark
The no-write-down condition

◮ prevents Hi from sending to Lo

◮ any publicly visible signals (messages).

The noninterference condition

◮ prevents Hi from sending to Lo

◮ any secret signals.
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Generalized noninterference
(McCullough, McLean)

Definition
We say that the Hi-Lo machine Q satisfies the

generalized noninterference requirement if

∀xs zs ∈ I∗∃ys ∈ I∗. xsL = ysL ∧ ysH = zsH

∧ Ev
q

L
(xs) = Ev

q

L
(ys)

holds for all states q.
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Generalized noninterference
(McCullough, McLean)

Homework
Prove that generalized noninterference and

noniterference are equivalent for deterministic machines

Remark
Generalized noninterference is also applicable to

nondeterministic machines.
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Outline

Information, channel security, noninterference

Encryption and decryption

Cryptosystems

Examples of simple crypto systems

Coding vs encryption

Cryptanalysis and notions of secrecy

Cyphers and modes of operation

Key establishment

What did we learn?
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Simple crypto system

Definition

Given the types

◮ M of plaintexts

◮ C of cyphertexts

◮ K of keys
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Simple crypto system

Definition

. . . a simple crypto-system is a triple of algorithms:

◮ key generation 〈KE,KD〉 : K ×K ,

◮ encryption E : K ×M −→ C, and

◮ decryption D : K × C −→M,



Security and
Trust II:

Information
Assurance

Peter-Michael
Seidel

Channel security

Encryption

Cryptosystems

Examples of simple

crypto systems

Coding vs encryption

Cryptanalysis

Modes

Generating keys

Lessons

Simple crypto system

Definition

. . . that together provide

◮ unique decryption:

D(KD,E(KE,m)) = m

◮ trapdoor encryption:

∀A : C −→M.
(
∀m. A(E(KE,m))= m

)

=⇒
(
∀c. A(c) = D(KD, c)

)
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Using a cryptosystem
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What where do the plaintexts come from?

Remarks

◮ The spaceM may be
◮ monoalphabetic: it consists of symbols

◮ M = Σ

◮ polyalphabetic: it consists of blocks of symbols
◮ M = ΣN
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What where do the plaintexts come from?

Remarks

◮ The spaceM may be
◮ monoalphabetic: it consists of symbols

◮ M = Σ

◮ polyalphabetic: it consists of blocks of symbols
◮ M = ΣN

◮ A plaintext is a string fromM.
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What where do the plaintexts come from?

Remarks

◮ The spaceM may be
◮ monoalphabetic: it consists of symbols

◮ M = Σ

◮ polyalphabetic: it consists of blocks of symbols
◮ M = ΣN

◮ A plaintext is a string fromM.

◮ A well-formed message is a meaningful plaintext:

a word, a sentence, a paragraph.
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What where do the plaintexts come from?

Remarks

◮ The spaceM may be
◮ monoalphabetic: it consists of symbols

◮ M = Σ

◮ polyalphabetic: it consists of blocks of symbols
◮ M = ΣN

◮ A plaintext is a string fromM.

◮ A well-formed message is a meaningful plaintext:

a word, a sentence, a paragraph.

◮ Not every plaintext is a well-formed message.
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What shall we study?

◮ Cryptography: science of crypto systems

◮ Cryptology: designing crypto systems
◮ to encrypt plaintexts as cyphertexts
◮ so that only those with a key can decrypt them

◮ Cryptanalysis: breaking crypto systems
◮ to extract the plaintexts without a key
◮ or even better, to extract the key
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Examples

Encode letters as numbers

a b c c e f g h i j k l m

0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z

13 14 15 16 17 18 19 20 21 22 23 24 25
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Example 1.1: Shift cypher
(monoalphabetic: Cæsar k = 3, ROT13 k = 13. . . )

◮ M = C = Z26 = {0, 1, 2, 3, . . . , 25}
◮ K = Z26

◮ KE = KD = k

◮ E(k ,m) = m + k mod 26

◮ D(k , c) = c − k mod 26
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Example 1.1: Shift cypher
(monoalphabetic: Cæsar k = 3, ROT13 k = 13. . . )

E.g., the key k = 5 gives

tx: i t i s v e r y c o l d
~m 8 19 8 18 21 4 17 24 2 14 11 3

k 5 5 5 5 5 5 5 5 5 5 5 5

~c 13 24 13 23 0 9 22 3 7 19 16 8

CY: N Y N X A J W D H T Q I

where
a b c d e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25
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Example 1.2: Shift cypher
(polyalphabetic)

◮ M = C = ZN
26

◮ K = ZN
26

◮ KE = KD = ~k = 〈k1, k2, . . . , kN 〉
◮ E(~k , ~m) = ~m + ~k mod 26

◮ D(~k , ~c) = ~c − ~k mod 26
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Example 1.2: Shift cypher
(polyalphabetic)

E.g., the block length N = 6 and the keyword

kd="monkey" give

tx: i t i s v e r y c o l d
~m 8 19 8 18 21 4 17 24 2 14 11 3

kd: m o n k e y m o n k e y
~k 12 14 13 10 4 24 12 14 13 10 4 24

~c 20 7 21 2 25 2 3 12 15 24 15 1

CY: U H V C Z B C M P Y P B

where
a b c c e f g h i j k l m
0 1 2 3 4 5 6 7 8 9 10 11 12

n o p q r s t u v w x y z
13 14 15 16 17 18 19 20 21 22 23 24 25
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Example 1.2: Shift cypher
(polyalphabetic)

Terminology

A polyalphabetic shift cypher where

◮ each key K ∈ ZN
26

is used to encrypt

◮ a single message ~m ∈ ZN
26

is called a one-time-pad. It is

◮ perfectly secure, but it reduces

◮ the task to transfer an N-character message to

◮ the task to transfer an N-character key.
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Example 1.2: Shift cypher
(polyalphabetic)

Fact
A polyalphabetic shift cypher where

◮ a key K ∈ ZN
26

is used to encrypt

◮ more than one ~m1, ~m2 . . . ∈ ZN
26

is insecure.
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Example 1.2: Shift cypher
(polyalphabetic)

Fact
A polyalphabetic shift cypher where

◮ a key K ∈ ZN
26

is used to encrypt

◮ more than one ~m1, ~m2 . . . ∈ ZN
26

is insecure.

We shall prove this.
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Example 1.2: Shift cypher
(polyalphabetic)

Terminology vs history

Polyalphabetic shift cyphers are often called Vigenère’s

cyphers.

This is a sad confusion. Vigenère had nothing to do with

polyalphabetic shift cyphers.

He designed the first auto-keying cypher.
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Example 1.3: Affine cypher
(polyalphabetic)

◮ M = C = ZN
26

,

◮ K =
(
Z
∗
26

)N
× ZN

26

◮ KE = KD =
〈
~a, ~k
〉

◮ E(~a, ~k , ~m) = ~a ∗ ~m + ~k mod 26

◮ D(~a, ~k , ~c) = 1
~a
∗ (~c − ~k) mod 26

where

~a ∗ ~m = 〈a1m1,a2m2, . . . ,anmN 〉
1

~a
=

〈
1

a1

,
1

a2

, . . . ,
1

aN

〉
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Example 1.4: Substitition cypher
(monoalphabetic)

◮ M = C = Σ = {a, b, c, . . . , z},
◮ K = S(Σ) = the permutations of Σ

◮ KE = KD = σ

◮ E(σ,m) = σ(m)

◮ D(σ, c) = σ−1(c)
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Example 1.5: Substitition cypher
(polyalphabetic)

◮ M = C = ΣN ,

◮ K = S(Σ), the permutations of Σ

◮ KE = KD = σ

◮ E(σ, ~m) =
〈
σ(m1), σ(m2), . . . σ(mn)

〉

◮ D(σ, ~c) =
〈
σ−1(c1), σ

−1(c2), . . . σ
−1(cn)

〉

where N = {1, 2, . . . , n}
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Example 2: Transposition cypher

◮ M = C = NN ,

◮ K = S(N) = the permutations of the block positions

◮ KE = KD = σ

◮ E(σ, ~m) =
〈
mσ(1),mσ(2), . . .mσ(n)

〉

◮ D(σ, ~c) =
〈
mσ−1(1),mσ−1(2), . . .mσ−1(n)

〉
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Example 3: RSA

◮ M = C = Zn, where n = pq, p, q prime

◮ K = Zϕ(n), where ϕ(n) = #
{
k < n | gcd(n, k) = 1

}

◮ KE = e

◮ KD = e−1 mod ϕ(n)

◮ E(e,m) = me mod n

◮ D(d , c) = cd mod n
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Example 3: RSA

◮ M = C = Zn, where n = pq, p, q prime

◮ K = Zϕ(n), where ϕ(n) = #
{
k < n | gcd(n, k) = 1

}

◮ KE = e f public key

◮ KD = e−1 mod ϕ(n) f private key

◮ E(e,m) = me mod n

◮ D(d , c) = cd mod n
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Example 3: RSA

Idea of public key cryptography

◮ KE is publicly announced
◮ eveyone can encrypt

◮ KD is kept secret
◮ only those who have it can decrypt
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Example 3: RSA

Idea of public key cryptography

◮ KE is publicly announced
◮ eveyone can encrypt

◮ KD is kept secret
◮ only those who have it can decrypt

It is important that KD cannot be derived from KE.
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Example 3: RSA

History of public key cryptography

◮ Whit Diffie and Marty Hellman proposed

computational hardness as a new foundation for

cryptography in 1976.

◮ Ron Rivest, Adi Shamir and Len Adleman (RSA)

implemented that idea using exponentiation in 1978.
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Example 3: RSA

History of public key cryptography

◮ Whit Diffie and Marty Hellman proposed

computational hardness as a new foundation for

cryptography in 1976.

◮ Ron Rivest, Adi Shamir and Len Adleman (RSA)

implemented that idea using exponentiation in 1978.

◮ The RSA patent became a base of a very profitable

company.
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Example 3: RSA

History of public key cryptography

◮ Whit Diffie and Marty Hellman proposed

computational hardness as a new foundation for

cryptography in 1976.

◮ Ron Rivest, Adi Shamir and Len Adleman (RSA)

implemented that idea using exponentiation in 1978.

◮ The RSA patent became a base of a very profitable

company. All involved became rich and famous.
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Example 3: RSA

History of public key cryptography

◮ In December 1997, the British Government

Communications Headquarters (GCHQ) released

five papers.
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Example 3: RSA

History of public key cryptography

◮ In December 1997, the British Government

Communications Headquarters (GCHQ) released

five papers.

◮ James Ellis’ paper "The possibility of non-secret

encryption" proposed computational hardness as a

foundation for cryptography.

◮ Clifford Cocks’ paper "A note on non-secret

encryption" implemented that idea using

exponentiation.
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Example 3: RSA

History of public key cryptography

◮ In December 1997, the British Government

Communications Headquarters (GCHQ) released

five papers.

◮ James Ellis’ paper "The possibility of non-secret

encryption" proposed computational hardness as a

foundation for cryptography. f 1970

◮ Clifford Cocks’ paper "A note on non-secret

encryption" implemented that idea using

exponentiation.f 1973
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Example 3: RSA

History of public key cryptography

◮ James Ellis retired in 1986 and died in November

1997.

◮ Clifford Cocks became the Chief Mathematician at

GCHQ in 2007.
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Example 3: RSA

History of public key cryptography

◮ James Ellis retired in 1986 and died in November

1997.

◮ Clifford Cocks became the Chief Mathematician at

GCHQ in 2007.

◮ Public key cryptography was critical in arm treaty

control as of 1986, but was not deployed earlier.
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Example 3: RSA

◮ Take p = 11 and q = 17.
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Example 3: RSA

◮ Take p = 11 and q = 17. Hence
◮ n = pq = 187,
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Example 3: RSA

◮ Take p = 11 and q = 17. Hence
◮ n = pq = 187, and
◮ ϕ(n) = (11 − 1)(17 − 1) = 160
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Example 3: RSA

◮ Take p = 11 and q = 17. Hence
◮ n = pq = 187, and
◮ ϕ(n) = (11 − 1)(17 − 1) = 160

◮ Take KE = e = 3
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Example 3: RSA

◮ Take p = 11 and q = 17. Hence
◮ n = pq = 187, and
◮ ϕ(n) = (11 − 1)(17 − 1) = 160

◮ Take KE = e = 3

◮ Then KD = d = 3−1 = 107 mod 160
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Example 3: RSA

◮ Take p = 11 and q = 17. Hence
◮ n = pq = 187, and
◮ ϕ(n) = (11 − 1)(17 − 1) = 160

◮ Take KE = e = 3

◮ Then KD = d = 3−1 = 107 mod 160

◮ E(3, p) = J because
◮ E(3, 15) = 153 = 3375 = 9 mod 187
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Example 3: RSA

◮ Take p = 11 and q = 17. Hence
◮ n = pq = 187, and
◮ ϕ(n) = (11 − 1)(17 − 1) = 160

◮ Take KE = e = 3

◮ Then KD = d = 3−1 = 107 mod 160

◮ E(3, p) = J because
◮ E(3, 15) = 153 = 3375 = 9 mod 187

◮ D(107, J) = p because
◮ D(107, 9) = 9107 = 15 mod 187
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Example 3: RSA

Homework
Prove that Euler’s totient function

ϕ : N −→ N

n 7−→ #
{
k < n | gcd(n, k) = 1

}

has the following properties:

◮ ϕ(pk) = (p − 1)pk−1 if p is prime

◮ ϕ(mn) = ϕ(m) · ϕ(n) if gcd(m, n) = 1

Derive a general formula to compute ϕ(n).
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Example 3: RSA

. . . is a crypto system because

◮ unique decryption holds by

ed = 1 mod ϕ(n) =⇒ (me)d = m mod n
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Example 3: RSA

. . . is a crypto system because

◮ unique decryption holds by

ed = 1 mod ϕ(n) =⇒ (me)d = m mod n

◮ trapdoor encryption holds since for every A

∀m.A(me) = m mod n =⇒ ∀c.A(c) = cd mod n

where ed = 1 mod ϕ(n)
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Example 3: RSA

To prove that the RSA satisfies these requirements,

we need some basic arithmetic.
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Refresher in arithmetic

Definition
Let (G, ·, 1) be a finite group and g ∈ G. We define

ord(G) = #G (the number of elements)

ord(g) = #〈g〉 = min{ℓ | gℓ = 1}

Theorem (Lagrange)

For every g ∈ G holds ord(g) | ord(G).
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Refresher in arithmetic

Definition
The multiplicative group of invertible elements of Zn is

Z
∗
n = {x ∈ Zn | ∃y . xy = 1 mod n}

Lemma
k ∈ Zn is invertible iff it is mutually prime with n, i.e.

k ∈ Z∗n ⇐⇒ gcd(n, k) = 1

Hence ord(Z∗n) = #
{
k < n | gcd(n, k) = 1

}
= ϕ(n).
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Refresher in arithmetic

Corollary (Euler)

For every invertible k ∈ Z∗n holds

kϕ(n) = 1 mod n
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Refresher in arithmetic

Corollary (Euler)

For every invertible k ∈ Z∗n holds

kϕ(n) = 1 mod n

Proof.
By the Theorem, ord(k) | ord(Z∗n).
By the Lemma, ord(Z∗n) = ϕ(n). �
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RSA unique decryption

Conclusion
Hence the unique decryption property of RSA

ed = 1 mod ϕ(n) ⇐⇒ ∃ℓ. ed = 1 + ℓϕ(n)

=⇒ med = m1+ℓϕ(n) = m mod n
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RSA Assumption

RSA Problem

◮ input:
◮ n = pq ∈ N where p and q are prime
◮ c ∈ Z∗n, i.e. gcd(c, n) = 1
◮ e ∈ Zϕ(n), i.e. gcd(e, p − 1) = gcd(e, q − 1) = 1

◮ output:
◮ m = e

√
c mod n, i.e. me = c mod n
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RSA Assumption

RSA Problem

◮ input:
◮ n = pq ∈ N where p and q are prime
◮ c ∈ Z∗n, i.e. gcd(c, n) = 1
◮ e ∈ Zϕ(n), i.e. gcd(e, p − 1) = gcd(e, q − 1) = 1

◮ output:
◮ m = e

√
c mod n, i.e. me = c mod n

RSA Assumption

There is no feasible algorithm solving the RSA Problem.
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RSA trapdoor encryption

Conclusion
Hence the trapdoor encryption property of RSA

∀m.A(me) = m mod n =⇒ ∀c.A(c) = cd mod n

where ed = 1 mod ϕ(n)
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RSA trapdoor encryption

Remark
RSA problem can be solved by finding d = e−1 mod ϕ(n)
i.e. by finding d , ℓ such that de + ℓϕ(n) = 1.
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RSA trapdoor encryption

Remark
RSA problem can be solved by finding d = e−1 mod ϕ(n)
i.e. by finding d , ℓ such that de + ℓϕ(n) = 1.

But computing ϕ(n) requires factoring n.
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RSA trapdoor encryption

Remark
RSA problem can be solved by finding d = e−1 mod ϕ(n)
i.e. by finding d , ℓ such that de + ℓϕ(n) = 1.

But computing ϕ(n) requires factoring n.

It is believed that factoring is not feasible:

if n has only large factors, they are hard to find.
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Coding

Definition
A coding scheme is an injective function f : X −→ G,

where

◮ X is a source, and

◮ G ⊂ Σ∗ is a language (or code).
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Examples of coding

◮ Morse code:
◮ source: characters
◮ code: strings of dots and dashes

◮ telegraphic codes:

source CODE

answer my question! LYOUI

are you trying to weasel out? BYOXO

you are a skunk! BMULD

not clearly coded, please repeat AYYLU

◮ English, Chinese. . . :
◮ source: meaningful phrases
◮ code: orthography
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Coding vs encryption

Terminology

The elements γ ∈ G ⊆ Σ∗ are called codewords.

Codewords are used as well-formed messages.
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Coding vs encryption

Terminology

The elements γ ∈ G ⊆ Σ∗ are called codewords.

Codewords are used as well-formed messages.

Remark
We usually takeM = Σ.

Any string of plaintexts ~m ∈ Σ∗ can be a message. (E.g.,

meaningful words and meaningless strings.)
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Coding vs encryption

Terminology

The elements γ ∈ G ⊆ Σ∗ are called codewords.

Codewords are used as well-formed messages.

Remark
We usually takeM = Σ.

Any string of plaintexts ~m ∈ Σ∗ can be a message. (E.g.,

meaningful words and meaningless strings.)

Not every message is a codeword.
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Coding vs encryption

Terminology

The elements γ ∈ G ⊆ Σ∗ are called codewords.

Codewords are used as well-formed messages.

Remark
We usually takeM = Σ.

Any string of plaintexts ~m ∈ Σ∗ can be a message. (E.g.,

meaningful words and meaningless strings.)

Not every message is a codeword.

Those that are are said to be well-formed.
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Coding vs encryption

Upshot

The difference between

◮ decryption C D−→M
◮ decodingM∗ ←֓ G

will play an important role in cryptanalysis.
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Outline

Information, channel security, noninterference

Encryption and decryption

Cryptanalysis and notions of secrecy

Cryptanalysis

Guessing

Probabilistic encryption

Secrecy proofs

Cyphers and modes of operation

Key establishment

What did we learn?
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Cryptanalytic attacks

Symmetric key attacks

When KE = KD = K, the attacks are

◮ cyphertext only (COA):

E(K,m1), . . . ,E(K,mℓ) ⊢ K

◮ known plaintext (KPA), chosen plaintext (CPA):

m1, . . . ,mℓ,E(K,m1), . . . ,E(K,mℓ) ⊢ K

◮ chosen cyphertext (CCA):

c1, . . . , cℓ,D(K, c1), . . . ,D(K, cℓ) ⊢ K



Security and
Trust II:

Information
Assurance

Peter-Michael
Seidel

Channel security

Encryption

Cryptanalysis

Cryptanalysis

Guessing

Probabilistic encryption

Secrecy proofs

Modes

Generating keys

Lessons

Cryptanalytic attacks

Asymmetric key attacks

When KE is publicly known

◮ cyphertext only (COA):

KE,E(KE,m1), . . . ,E(KE,mℓ) ⊢ KD

◮ known plaintext (KPA), chosen plaintext (CPA):

KE,m1, . . . ,mℓ,E(KE,m1), . . . ,E(KE,mℓ) ⊢ KD

◮ chosen cyphertext (CCA):

KE, c1, . . . , cℓ,D(KD, c1), . . . ,D(KD, cℓ) ⊢ KD

◮ adaptive chosen cyphertext (CCA2): . . . (later!)
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COA on monoalphabetic shift cypher

◮ M = C = Z26

◮ K = Z26

◮ KE = KD = k

◮ E(k ,m) = m + k mod 26

◮ D(k , c) = c − k mod 26
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COA on monoalphabetic shift cypher

◮ M = C = Z26

◮ K = Z26

◮ KE = KD = k

◮ E(k ,m) = m + k mod 26

◮ D(k , c) = c − k mod 26

Idea
Since there are just #K = 26 possible keys, simply try

one after the other.
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COA on monoalphabetic shift cypher

CY: N Y N X A J W D H T Q I
~c 13 24 13 23 0 9 22 3 7 19 16 8

k1 1 1 1 1 1 1 1 1 1 1 1 1

~m1 12 23 12 22 25 8 21 2 6 18 15 7

tx1: m x m w z i v c g s p h
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COA on monoalphabetic shift cypher

CY: N Y N X A J W D H T Q I
~c 13 24 13 23 0 9 22 3 7 19 16 8

k2 2 2 2 2 2 2 2 2 2 2 2 2

~m2 11 22 11 21 24 7 20 1 5 17 14 6

tx2: l w l v y h u b f r o g
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COA on monoalphabetic shift cypher

CY: N Y N X A J W D H T Q I
~c 13 24 13 23 0 9 22 3 7 19 16 8

k5 5 5 5 5 5 5 5 5 5 5 5 5

~m5 8 19 8 18 21 4 17 24 2 14 11 3

tx5: i t i s v e r y c o l d
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COA on substitution cypher

◮ M = C = Σ = {a, b, c, . . . , z},
◮ K = S(Σ) = the permutations of Σ

◮ KE = KD = σ

◮ E(σ,m) = σ(m)

◮ D(σ, c) = σ−1(c)
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COA on substitution cypher

◮ M = C = Σ = {a, b, c, . . . , z},
◮ K = S(Σ) = the permutations of Σ

◮ KE = KD = σ

◮ E(σ,m) = σ(m)

◮ D(σ, c) = σ−1(c)

Fact
Since #K = 26! ≈ 4 · 1026, enumerating the keys and

searching for a well-formed plaintext will not help.
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Idea
Align the letter frequencies of plaintext (e.g. English). . .
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COA on substitution cypher

Idea
. . . with the letter frequencies of the cyphertext

Q W D S E O G B K M A Z C P J L F U X R I Y V T H N
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COA on substitution cypher

Summary

◮ the messages are drawn from a source X and coded

along f : X −→ G ⊆ M∗

◮ the frequency distribution ProbX : X −→ [0, 1] induces

the frequency distribution ProbM :M −→ [0, 1]

ProbM
(
~m
)

= ProbX
(
f −1(~m

)

◮ the frequency distribution ProbC : C −→ [0, 1] can be

extracted if there is enough cyphertext
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COA on substitution cypher

The patterns

M C

[0, 1]

ProbProb
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COA on substitution cypher

The patterns are aligned to reconstruct

M C

[0, 1]

E

D

ProbProb
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KPA on the one-time-pad

◮ M = C = K = ZN
26

◮ E(~k , ~m) = ~m + ~k

◮ D(~k , ~c) = ~c − ~k
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KPA on the one-time-pad

◮ M = C = K = ZN
26

◮ E(~k , ~m) = ~m + ~k

◮ D(~k , ~c) = ~c − ~k

Attack
Given ~m and E(~k , ~m) = ~m + ~k the cryptanalyst derives

~k = E(~k , ~m) − ~m
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Can we prove that there are no attacks?
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Can we prove that there are no attacks?

Proposition

If all keys are equally likely, then the one-time-pad is

secure, in the sense that the cyphertext provides no

information about the plaintext.
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Can we prove that there are no attacks?

We need tools for such proofs!
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Guessing

Attack scenario: KPA, CPA

The cryptanalyst knows which crypto system is used.

He wants to derive the key from the known or chosen

plaintext, and its encryptions

m1, . . . ,mℓ,E(K,m1), . . . ,E(K,mℓ) ⊢ K
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Guessing

Attack scenario: KPA, CPA

The cryptanalyst knows which crypto system is used.

He wants to derive the key from the known or chosen

plaintext, and its encryptions

m1, . . . ,mℓ,E(K,m1), . . . ,E(K,mℓ) ⊢ K

In some cases, he

◮ may not know the plaintext, but

◮ can recognize well-formed messages.
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Guessing

Terminology

A random variable is a function X : X −→ V where

◮ X is a source and

◮ V is a set, representing values.
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Guessing

Terminology

A random variable is a function X : X −→ V where

◮ X is a source and

◮ V is a set, representing values.

Notation
We write

Prob(X = v) = Prob{x ∈X | X (x) = v}
=

∑

X(x)=v

Prob(x)
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Guessing process

Given a probability distribution over the key space K , a

guessing attack is a random variable G : K∗ −→ N, where

G(k1, k2, . . . , kn) = i

means that ki = KD.
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Guessing

Guessing process

Given a probability distribution over the key space K , a

guessing attack is a random variable G : K∗ −→ N, where

G(k1, k2, . . . , kn) = i

means that ki = KD.

Remark
The intuition is that we are given some cyphertext ~c, and

we test whether D(ki , ~c) is a well-formed message for one

ki after the other.
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Exercise
Suppose that there are ℓ = #K keys, and that they are all

equally likely. What is the probability that

◮ G = 1, i.e. the key is guessed at once,

◮ G = n, i.e. the key is guessed after exactly n tries.

◮ G ≤ n, i.e. the key is guessed in at most n tries.
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Solution

◮ Since there are ℓ = #K equally likely keys,
◮ the probability that the right key is drawn at once is

Prob(G = 1) = p1 = 1
ℓ
;
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Guessing

Solution

◮ Since there are ℓ = #K equally likely keys,
◮ the probability that the right key is drawn at once is

Prob(G = 1) = p1 = 1
ℓ
;

◮ the probability that the right key is not drawn at once

is q1 = Prob(G , 1) = 1 − p1 = ℓ−1
ℓ

.
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Solution

◮ Since there are ℓ = #K equally likely keys,
◮ the probability that the right key is drawn at once is

Prob(G = 1) = p1 = 1
ℓ
;

◮ the probability that the right key is not drawn at once

is q1 = Prob(G , 1) = 1 − p1 = ℓ−1
ℓ

. In this case, we
draw again, from ℓ − 1 untested keys.
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Solution

◮ Since there are ℓ = #K equally likely keys,
◮ the probability that the right key is drawn at once is

Prob(G = 1) = p1 = 1
ℓ
;

◮ the probability that the right key is not drawn at once

is q1 = Prob(G , 1) = 1 − p1 = ℓ−1
ℓ

. In this case, we
draw again, from ℓ − 1 untested keys. This time,

◮ the probability that the right key is drawn immediately

is now p2 = 1
ℓ−1

, and thus

Prob(G = 2) = q1 · p2 = ℓ−1
ℓ
· 1
ℓ−1

= 1
ℓ
;
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Solution

◮ Since there are ℓ = #K equally likely keys,
◮ the probability that the right key is drawn at once is

Prob(G = 1) = p1 = 1
ℓ
;

◮ the probability that the right key is not drawn at once

is q1 = Prob(G , 1) = 1 − p1 = ℓ−1
ℓ

. In this case, we
draw again, from ℓ − 1 untested keys. This time,

◮ the probability that the right key is drawn immediately

is now p2 = 1
ℓ−1

, and thus

Prob(G = 2) = q1 · p2 = ℓ−1
ℓ
· 1
ℓ−1

= 1
ℓ
;

◮ whereas the probability that the right key is still not

drawn is q2 = ℓ−2
ℓ−1

. . .
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In general, with pi =
1

ℓ−i+1 and qi =
ℓ−i
ℓ−i+1 , the probability

that a particular key is drawn in the n-th draw is

Prob(G = n) = q1 · q2 · · · qn−1 · pn

=
ℓ − 1

ℓ
· ℓ − 2

ℓ − 1
· · · ℓ − n + 1

ℓ − n + 2
· 1

ℓ − n + 1

=
1

ℓ
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Guessing

In general, with pi =
1

ℓ−i+1 and qi =
ℓ−i
ℓ−i+1 , the probability

that a particular key is drawn in the n-th draw is

Prob(G = n) = q1 · q2 · · · qn−1 · pn

=
ℓ − 1

ℓ
· ℓ − 2

ℓ − 1
· · · ℓ − n + 1

ℓ − n + 2
· 1

ℓ − n + 1

=
1

ℓ

The probability that a particular key is drawn in at most n

tries is

Prob(G ≤ n) =
n∑

i=1

Prob(G = i) =
n

ℓ
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Elements of probability

Notation
Given a source X and events α, β, γ . . . ⊆ X, we write

[
α
]

=
∑

x∈α
Prob(x)

[
α ⊢ β] =

[
α ∩ β

]

[
α
]
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Elements of probability

Remark
Traditionally, our

[
α ⊢ β] is written Prob (β | α),

and called conditional probability.
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Elements of probability

Remark
Traditionally, our

[
α ⊢ β] is written Prob (β | α),

and called conditional probability.

While the traditional notations need to be respected,

cryptography puts conditional probability to heavy use,

and abuse.
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Elements of probability

Remark
Traditionally, our

[
α ⊢ β] is written Prob (β | α),

and called conditional probability.

While the traditional notations need to be respected,

cryptography puts conditional probability to heavy use,

and abuse.[
α ⊢ β] tells how likely it is to guess β from α.
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Elements of probability

Homework
[
α ⊢ ¬β] = 1 −

[
α ⊢ β]

[
β
]
=
[
α
]
·
[
α ⊢ β]+ [¬α] · [¬α ⊢ β]

[
α ⊢ β ∪ γ] = [α ⊢ β]+ [α ⊢ γ] − [α ⊢ β ∩ γ]
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Elements of probability

Homework
[
α ⊢ ¬β] = 1 −

[
α ⊢ β]

[
β
]
=
[
α
]
·
[
α ⊢ β]+ [¬α] · [¬α ⊢ β]

[
α ⊢ β ∪ γ] = [α ⊢ β]+ [α ⊢ γ] − [α ⊢ β ∩ γ]

Moreover

[
α ∩ β

]
=
[
α
]
·
[
β
]
⇐⇒

[
α ⊢ β] = [β]

⇐⇒
[
β ⊢ α] = [α]
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Elements of probability

Bayes theorem

[
β ⊢ α] =

[
α
][
α ⊢ β]

[
α
][
α ⊢ β]+ [¬α][¬α ⊢ β]
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Elements of probability

Proposition

[
β ⊢ α] =

[
γ ⊢ α]

⇓[
α ⊢ β] · [β ⊢ γ] =

[
α ⊢ γ] · [γ ⊢ β]
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Elements of probability

Proposition

Since

[
α ⊢ β ∩ γ] =

[
α ⊢ β] · [α ∩ β ⊢ γ]

it follows that

[
α ⊢ β] · [α ∩ β ⊢ γ] ≤ [

α ⊢ γ]

with the equality when
[
α ∩ γ ⊢ β] = 1, so that[

α ⊢ γ] = [α ⊢ β ∩ γ].
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Problem with simple crypto systems

Leaking partial information

The trapdoor encryption condition

∀m.A(E(KE,m)) = m =⇒ ∀c.A(c) = D(KD, c)

only talks about total decryptions.
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Problem with simple crypto systems

Leaking partial information

The trapdoor encryption condition

∀m.A(E(KE,m)) = m =⇒ ∀c.A(c) = D(KD, c)

only talks about total decryptions.

A simple crypto system can leak partial information.
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Problem with simple crypto systems

Two kinds of leaks
The attacker may observe traffic and build

◮ a partial map A : C⇀M
◮ e.g., by recognizing

E(K, "yes"),E(K, "no"),E(K, "buy") . . .

◮ a map A : C −→ ∆M, extracting partial information
◮ e.g., by comparing E(K,m0),E(K,m1). . .



Security and
Trust II:

Information
Assurance

Peter-Michael
Seidel

Channel security

Encryption

Cryptanalysis

Cryptanalysis

Guessing

Probabilistic encryption

Secrecy proofs

Modes

Generating keys

Lessons

Example: Reusing one-time-pad

Proposition

If the same one-time-pad key is used to encrypt more

than one block, then a CPA attacker can extract partial

information.
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Example: Reusing one-time-pad

Proposition

If the same one-time-pad key is used to encrypt more

than one block, then a CPA attacker can extract partial

information.

E.g., the attacker can form two messages such that, if

she is given the encryption of one of them, then she can

tell which one. (This is one bit of information extracted.)
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Example: Reusing one-time-pad

Proof
The CPA attacker forms two messages in the form:

~m0 = ~m@~m ~m1 = ~m@~ℓ

where ~x@~y is concatenation and ~ℓ , ~m are of length N.
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Example: Reusing one-time-pad

Proof
The CPA attacker forms two messages in the form:

~m0 = ~m@~m ~m1 = ~m@~ℓ

where ~x@~y is concatenation and ~ℓ , ~m are of length N.

Encrypting with the key ~k of length N gives

E(~k , ~m0) = ~c@~c E(~k , ~m1) = ~c@~d

where ~c = ~m + ~k and ~d = ~m + ~ℓ.
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Probabilistic crypto system

Definition
Given the types

◮ M of plaintexts

◮ C of cyphertexts

◮ K of keys

◮ R of random seeds
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Probabilistic crypto system

Definition
. . . a probabilistic crypto-system is a triple of algorithms:

◮ key generation 〈KE,KD〉 : R −→ K ×K ,

◮ encryption E : R × K ×M −→ C, and

◮ decryption D : K × C −→M,

When confusion seems unlikely, we abbreviate

◮ K(r) to K and

◮ E(r , k ,m) to E(k ,m) and even E(m).
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Probabilistic crypto system

Definition
. . . that together provide

◮ unique decryption:

D(KD,E(KE,m)) = m

◮ secrecy (Shannon: unconditional, "perfect security"):

[
c∈E(K,m) ⊢ m∈M

]
=
[
m∈M

]
(IT-SEC)
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Probabilistic crypto system

Definition
. . . that together provide

◮ unique decryption:

D(KD,E(KE,m)) = m

◮ secrecy:

[
c∈E(K,m) ⊢ m∈A(c)

]
=
[
m∈A(0)

]
(COM-SEC)

for every feasible probabilistic algorithm A : C −→M,

(i.e. A : R × K × C −→M)
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Probabilistic crypto system

Definition
. . . that together provide

◮ unique decryption:

D(KD,E(KE,m)) = m

◮ secrecy:

[
m0,m1∈M, c∈E(K,mb) ⊢ b∈{0, 1}

]
=

[
m0,m1∈M ⊢ b∈{0, 1}

]
=

1

2
(IT-IND)
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Probabilistic crypto system

Definition
. . . that together provide

◮ unique decryption:

D(KD,E(KE,m)) = m

◮ secrecy:

[
m0,m1∈M, c∈E(mb) ⊢ b∈A(m0,m1, c)

]
≤

[
m0,m1∈M ⊢ b∈A(m0,m1, 0)

]
≤ 1

2
(COM-IND)

for any feasible probabilistic A :M×M× C −→ {0, 1}
(with KE and the seed implicit)
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Probabilistic crypto system

Definition
. . . that together provide

◮ unique decryption:

D(KD,E(KE,m)) = m

◮ secrecy (Goldwasser-Micali: "semantic security")

[
m0,m1∈A0, c∈E(mb) ⊢

b∈A1(m0,m1, c)
]
≤ 1

2
(IND-CPA)

for any probabilistic algorithm A = 〈A0,A1〉. . .
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Probabilistic crypto system

Definition
. . . that together provide

◮ unique decryption:

D(KD,E(KE,m)) = m

◮ secrecy (under chosen cyphertext attack):

[
c0∈A0, m∈D(c0),
m0,m1∈A1(c0,m), c∈E(mb)

⊢
b∈A2(c0,m, m0,m1, c)

]
≤ 1

2
(IND-CCA)

for any probabilistic algorithm A = 〈A0,A1,A2〉. . .



Security and
Trust II:

Information
Assurance

Peter-Michael
Seidel

Channel security

Encryption

Cryptanalysis

Cryptanalysis

Guessing

Probabilistic encryption

Secrecy proofs

Modes

Generating keys

Lessons

Probabilistic crypto system

Definition
. . . that together provide

◮ unique decryption:

D(KD,E(KE,m)) = m

◮ secrecy (under adaptive chosen cyphertext attack):



c0∈A0, m∈D(c0),
m0,m1∈A1(c0,m), c∈E(mb)
c1∈A2(c0,m,m0,m1), m̃ ∈ D(c1 , c)

⊢

b∈A3(c0,m,m0,m1, c, c1, m̃)

 ≤
1

2
(IND-CCA2)

for any probabilistic algorithm A = 〈A0,A1,A2,A3〉. . .



Security and
Trust II:

Information
Assurance

Peter-Michael
Seidel

Channel security

Encryption

Cryptanalysis

Cryptanalysis

Guessing

Probabilistic encryption

Secrecy proofs

Modes

Generating keys

Lessons

Taxonomy of secrecy properties

IND-CCA2

IT-SEC

COM-SECIT-IND

COM-IND

IND-CPA

IND-CCAIND-CCA1
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Example: El Gamal

Fix a finite field F and g ∈ F∗.

M = R = F KE(a) = ga

C = F∗ × F KD(a) = a

K = F∗ × F∗ E(r , k ,m) =
〈
gr , k r ·m

〉

D
(
k , 〈c1, c2〉

)
=

c2

ck
1
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Example: El Gamal

Fix a finite field F and g ∈ F∗.

M = R = F KE(a) = ga

C = F∗ × F KD(a) = a

K = F∗ × F∗ E(r , k ,m) =
〈
gr , k r ·m

〉

D
(
k , 〈c1, c2〉

)
=

c2

ck
1

Unique decryption

D (KD(a),E(r ,KE(a),m)) = D (a,E(r , ga,m))

= D
(
a,
〈
gr , (ga)

r ·m
〉)

=
gar ·m
(gr )a = m
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Unconditional security of one-time-pad

Proposition

If all keys are equally likely, then the one-time-pad is

unconditionally secure, i.e. it satisfies (IT-SEC).
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Unconditional security of one-time-pad

Proposition

If all keys are equally likely, then the one-time-pad is

unconditionally secure, i.e. it satisfies (IT-SEC).

Proof[
c∈C ⊢ m∈M

]
=
[
m∈M

]
follows from[

m∈M ⊢ c∈C
]
=
[
c∈C
]

because

[
c∈C ⊢ m∈M

]
=

[
m∈M

]
·
[
m∈M ⊢ c∈C

]

[
c∈C
]

. . .
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Unconditional security of one-time-pad

Proof (continued)

On one hand, for all messages m and cyphertexts c holds

[
m∈M ⊢ c∈C

]
=
[
k = c −m∈K

]
=

1

26N
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Unconditional security of one-time-pad

Proof (continued)

On the other hand, we have

[
c ∈ C

]
=

∑

m+k=c

[
m ∈ M

]
·
[
k ∈ K

]

=
∑

m∈M

[
m ∈ M

]
·
[
c −m∈K

]

=
1

26N

∑

m∈M

[
m ∈ M

]

=
1

26N
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Security of El Gamal

Computational Diffie-Hellman Assumption (CDH)

There is no feasible probabilistic algorithm CDH : F2 −→ F
such that for all a, b ∈ F holds with a high probability

CDH(ga, gb) = gab
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Security of El Gamal

Computational Diffie-Hellman Assumption (CDH)

There is no feasible probabilistic algorithm CDH : F2 −→ F
such that for all a, b ∈ F holds with a high probability

CDH(ga, gb) = gab

Decision Diffie-Hellman Assumption (DDH)

There is no feasible prob. algorithm DDH : F3 −→ {0, 1}
such that for all a, b ∈ F holds with a probability > 1

2

DDH(x , y , z) =


1 if ∃uv . x = gu ∧ y = gv ∧ z = guv

0 otherwise
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Security of El Gamal

Proposition

El Gamal satisfies (IND-CPA) if and only if (DDH) holds.

El Gamal does not safisty (IND-CCA).
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Security of El Gamal

Recall the definitions:
. . .

◮ unique decryption:

D(KD,E(KE,m)) = m

◮ secrecy (Goldwasser-Micali: "semantic security")

[
m0,m1∈A0, c∈E(mb) ⊢

b∈A1(m0,m1, c)
]
≤ 1

2
(IND-CPA)

for any probabilistic algorithm A = 〈A0,A1〉. . .
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Security of El Gamal

Recall the definitions:
. . .

◮ unique decryption:

D(KD,E(KE,m)) = m

◮ secrecy (under chosen cyphertext attack):

[
c0∈A0, m∈D(c0),
m0,m1∈A1(c0,m), c∈E(mb)

⊢
b∈A2(c0,m, m0,m1, c)

]
≤ 1

2
(IND-CCA)

for any probabilistic algorithm A = 〈A0,A1,A2〉. . .
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Security of El Gamal

Proof of (DDH)⇒(IND-CPA)

Suppose ¬(IND-CPA).
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Security of El Gamal

Proof of (DDH)⇒(IND-CPA)

Suppose ¬(IND-CPA).

This means that there is a feasible probabilistic algorithm

A = 〈A0,A1〉 which
◮ generates m0,m1∈A0(k), and then

◮ guesses b∈A1(k ,m0,m1, cb) with a probability > 1
2

◮ where cb = E(s, k ,mb) for b∈{0, 1}.
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Security of El Gamal

Proof of (DDH)⇒(IND-CPA)

Suppose ¬(IND-CPA).

This means that there is a feasible probabilistic algorithm

A = 〈A0,A1〉 which
◮ generates m0,m1∈A0(k), and then

◮ guesses b∈A1(k ,m0,m1, cb) with a probability > 1
2

◮ where cb = E(s, k ,mb) for b∈{0, 1}.
We construct the algorithm DDH : F3 −→ {0, 1} to decide

whether a triple 〈x , y , z〉 is in the form
〈
gu , gv , guv〉 for

some u, v ∈ F.
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Security of El Gamal

Proof (continued)

If the private key KD = u, then El Gamal encrypts

E(v , gu ,m) = 〈gv , guv ·m〉



Security and
Trust II:

Information
Assurance

Peter-Michael
Seidel

Channel security

Encryption

Cryptanalysis

Cryptanalysis

Guessing

Probabilistic encryption

Secrecy proofs

Modes

Generating keys

Lessons

Security of El Gamal

Proof (continued)

If the private key KD = u, then El Gamal encrypts

E(v , gu ,m) = 〈gv , guv ·m〉

This means that

DDH(x , y , z) = 1 ⇐⇒ ∀m.E(x ,m) = 〈y , z ·m〉
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Security of El Gamal

Proof (continued)

If the private key KD = u, then El Gamal encrypts

E(v , gu ,m) = 〈gv , guv ·m〉

This means that

DDH(x , y , z) = 1 ⇐⇒ ∀m.E(x ,m) = 〈y , z ·m〉

But ¬(IND-CPA) says that A = 〈A0,A1〉 can decide the

right-hand side, so that m0,m1∈A0(x) gives

DDH(x , y , z) =



1 if A1 (x ,m0,m1, 〈y , z ·m0〉) = 0

and A1 (x ,m0,m1, 〈y , z ·m1〉) = 1

0 otherwise
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Security of El Gamal

Homework
Complete the proof of the Proposition, showing that

◮ (IND-CPA)⇒(DDH)

◮ (IND-CCA) does not hold.
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Outline

Information, channel security, noninterference

Encryption and decryption

Cryptanalysis and notions of secrecy

Cyphers and modes of operation

Modes of operation

Composite cryptosystems

Key establishment

What did we learn?
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Modes of operation

ECB

CCB

(Ramzan)
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Composite cryptosystems

Shannon’s group algebra.

We mix and compose

◮ substitution cyphers and

◮ transposition cyphers

In diagrams, substitutions are boxes; but transpositions

are knots of threads.

Feistel cyphers are a standardized form to perform a

simple transposition: they split the output in two sets of

strings, and send them to different places.
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Algebra of dataflow

There is a whole algebra of transpositions. Transpositions

are the terms of an algebra where each variable must be

used exactly once. (Pitts-Gabbay: names, variables,

nonces.)

The Feistel cypher and the modes of operation are very

special terms in this algebra.

DES and AES.
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Outline

Information, channel security, noninterference

Encryption and decryption

Cryptanalysis and notions of secrecy

Cyphers and modes of operation

Key establishment

"Programming Satan’s computer"

Diffie-Hellman Key Agreement

Needham-Schroeder Public Key Protocol

What did we learn?
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Key establishment

Where do the keys come from?
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Key establishment

◮ Traditionally, keys sent through a secure channel
◮ messenger, direct handover, physical protection
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Key establishment

◮ Traditionally, keys sent through a secure channel
◮ messenger, direct handover, physical protection

◮ In cyberspace, there are no secure channels
◮ only you and me and cryptography
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Key establishment in cyberspace

What is cyberspace?
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Key establishment in cyberspace

What is cyberspace?

◮ space of costless communication
◮ instantaneous message delivery
◮ any two nodes are neighbors: no notion of distance
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Key establishment in cyberspace

What is cyberspace?

◮ space of costless communication
◮ instantaneous message delivery
◮ any two nodes are neighbors: no notion of distance

◮ end-to-end architecture (TCP, UDP)
◮ simple network links
◮ smart network nodes ("ends")
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What is cyberspace?

◮ space of costless communication
◮ instantaneous message delivery
◮ any two nodes are neighbors: no notion of distance

◮ end-to-end architecture (TCP, UDP)
◮ simple network links
◮ smart network nodes ("ends")

◮ "Satan’s computer" (Ross Anderson)
◮ network controlled by the adversaries: Eve, Satan
◮ security only through crypto at the "ends"
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Key establishment in cyberspace

Generate your own public key

◮ El Gamal: Alice generates K =
〈
ga, a

〉

◮ she picks KD = a
◮ computes KE = ga and
◮ sends KE to Bob

◮ RSA: Alice generates K =
〈
〈n, e〉, d〉

〉

◮ she picks large primes p and q and sets n = pq
◮ picks e ∈ Z∗

(p−1)(q−1)

◮ computes KD = d = e−1 mod (p − 1)(q − 1)
◮ sends KE = 〈n, e〉 to Bob
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Key establishment in cyberspace

Problem
Eve can impersonate Alice

◮ Eve can generate KE and KD,

◮ send KD to Bob

◮ and say "Hi, Alice here, this is my key".
◮ Bob encrypts his messages to Alice by KE

◮ Eve decrypts them by KD.
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Two party key agreement

Diffie-Hellman Key Agreement Protocol (DHKA)

rsrs

rs

rs rs

rs

A B

νx

νy

A to B:gx

B to A:gy

kAB=vx kXB=uy

X to B:u

B to X :v
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Two party key agreement

Attack on DHKA

rsrs

rs

rs rs

rs rs

rsrs

rs

A M B

νx

νy

A to B:gx

B to A:gy

B to A:g ỹ

A to B:g x̃νx̃

νỹ

kAB=gxỹ kAB=g x̃ygxỹ g x̃y
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Needham-Schroeder Public Key Protocol (NSPK)

rs rs

rs

rs rs

rsrs

rs

A B

νx

νy

A to B:EB(x ,A)

B to A:EA(x ,y)

A to B:EB(y)
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Bootstrapping key agreement

Attack on NSPK

rs rs

rs

rs rs

rs rs

rsrs

rsrs

rs rs

rs

A M B

νx

νy

A to M:EM (x ,A)

B to A:EA(x ,y)

M to A:EA(x ,y)

A to M:EM (y)

A to B:EB(y)

A to B:EB(x ,A)



Security and
Trust II:

Information
Assurance

Peter-Michael
Seidel

Channel security

Encryption

Cryptanalysis

Modes

Generating keys

"Satan’s computer"

DHKA

NSPK

Lessons

Bootstrapping key agreement

Attack on NSPK

rs rs

rs

rs rs

rs rs

rsrs

rsrs

rs rs

rs

A M B

νx

νy

A to M:EM (x ,A)

B to X :EX (x ,y)

M to X :EX (x ,y)

A to M:EM (y)

X to B:EB(y)

X to B:EB(x ,X )

X to M:z
DM (z)x ,X=
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Attack on NSPK

rs rs

rs

rs rs

rs rs

rsrs

rsrs

rs rs

rs

A M B

νx

νy

A to M:EM (x ,A)

B to X :EX (x ,y)

M to X :w

A to M:EM (y)

A to B:EB(y)

X to B:EB(x ,X )

X to M:z
DM (z)x ,X=

B to X :w



Security and
Trust II:

Information
Assurance

Peter-Michael
Seidel

Channel security

Encryption

Cryptanalysis

Modes

Generating keys

"Satan’s computer"

DHKA

NSPK

Lessons

Bootstrapping key agreement

History of NSPK

◮ NSPK was proposed by in a seminal paper in 1978.



Security and
Trust II:

Information
Assurance

Peter-Michael
Seidel

Channel security

Encryption

Cryptanalysis

Modes

Generating keys

"Satan’s computer"

DHKA

NSPK

Lessons

Bootstrapping key agreement

History of NSPK

◮ NSPK was proposed by in a seminal paper in 1978.

◮ It was often used and studied.



Security and
Trust II:

Information
Assurance

Peter-Michael
Seidel

Channel security

Encryption

Cryptanalysis

Modes

Generating keys

"Satan’s computer"

DHKA

NSPK

Lessons

Bootstrapping key agreement

History of NSPK

◮ NSPK was proposed by in a seminal paper in 1978.

◮ It was often used and studied.

◮ In 1996, Gavin Lowe found the attack
◮ using the FDR (Failure Divergence Refinement)
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◮ as a part of his project work at Comlab
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History of NSPK

◮ NSPK was proposed by in a seminal paper in 1978.

◮ It was often used and studied.

◮ In 1996, Gavin Lowe found the attack
◮ using the FDR (Failure Divergence Refinement)

checker
◮ as a part of his project work at Comlab

◮ Later he built Casper.

◮ More at practicals!
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Outline

Information, channel security, noninterference

Encryption and decryption

Cryptanalysis and notions of secrecy

Cyphers and modes of operation

Key establishment

What did we learn?
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Lessons about the bad information flows

◮ information leaks through interference of resources
◮ covert channels are hard to eliminate
◮ formal models help prevent Trojan intrusions

◮ secrecy is achieved in complicated ways
◮ some of the "purest" maths became the most applied
◮ public key crypto needed a public science of crypto

◮ but cryptanalysis is also hard
◮ encryptions are not broken every day
◮ most security failures arise from protocol failures
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Lessons about computation

◮ The simple insights that
◮ some computations are hard to invert

◮ e.g., getting p or q from pq, or a from ga and g

◮ some informations are hard to guess
◮ if the source is large and unbiased

◮ point to the important lesson that
◮ complexity and
◮ randomness

are powerful computational resources.

◮ The negative can be used as the positive.
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. . . are used to push good information flows

◮ The absence of bad information flows
◮ "If noone can forge Alice’s signature. . .

◮ is a fulcrum to move the good information flows.
◮ . . . then this message must be from Alice :)))"
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Guiding principles for the next part

◮ Every secret must be authenticated
◮ to prevent impersonation.
◮ Most protocol failures are authentication failures .

◮ Every authentication must be based on a secret
◮ (in cyberspace).
◮ The chicken and the egg.

◮ Security is always bootstrapped
◮ secrecy and authenticity are based on each other
◮ new secrets are derived from old secrets
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