Security and Trust II: Information Assurance
Part 1: Introduction

Peter-Michael Seidel

January 11, 2017
Outline

Security examples

- Securing resources: authorization
- Securing information: secrecy
- Securing information: authenticity
- Securing social interactions and networks

What is computer security?

Structure of the course
Securing resources: authorization

Digital Rights Management (DRM)
Securing resources: authorization

Digital Rights Management (DRM)

- art used to be bound to an artist
 - music was available only from a musician
 - a story from a storyteller
 - a painting could only be seen in one place
Securing resources: authorization

Digital Rights Management (DRM)

- mass reproduction bound art to copiable media
 - copying technologies led to *copyright*-based markets
 - artists could sell lots of books and records
- **Copyright Management**: branding, celebrities
Securing resources: authorization

Digital Rights Management (DRM)

- digital networks freed art (science, religion...) from physical tokens (books, CDs...)
 - copying of digital content is essentially costless
 - Copyright Management becomes unviable
 - **Digital Rights Management**: seeks to
 - prevent (sandboxing, Vista...)
 - detect (watermarking...)
 - deter (lawyers...)

unauthorized copying of digital content
Securing information: secrecy

Task: Fair deal of virtual cards

Design a P2P application for mobile devices to deal virtual cards.
Securing information: secrecy

Problem

The players mistrust each other’s device. The dealing device must not see the cards that it is dealing.
Securing information: secrecy

Problem

The players mistrust each other’s device. The dealing device must not see the cards that it is dealing.

Hint

Each device can encrypt messages, i.e. make them unreadable for others.
Securing information: secrecy

Problem

The players mistrust each other’s device. The dealing device must not see the cards that it is dealing.

Hint

Each device can encrypt messages, i.e. make them unreadable for others. Encryptions can be removed in any order.
Securing social computation

Special case: Virtual coin flipping

Flip a virtual coin (without using a physical coin).
Securing social computation

Special case: Virtual coin flipping

Flip a virtual coin (without using a physical coin).

Variations: Millionaires’ Problem

Two millionaires need to truthfully find out which one is richer, without telling how rich they are.
Securing information: authenticity

Task

Spammers need lots of webmail accounts. They write bots who visit Hotmail, Yahoo! etc, to open disposable accounts, to distribute spam.

Design a protocol for setting up a webmail account which will be able to tell apart bots from humans.
First computer
First authentication protocol

challenge

Turing test
First authentication protocol

Turing test

challenge

???
First authentication protocol

challenge

response

Turing test
CAPTCHA
Examples
Authorization
Secrecy
Authentication
Voting
Security?
Structure
CAPTCHA
CAPTCHA

Examples
Authorization
Secrecy
Authentication
Voting
Security?
Structure
CAPTCHA
Agent Bot Smith in the Middle
Problem

Smart card relay attacks
Problem
Smart card relay attacks

This becomes much easier with NFC phones!
Securing social interactions and networks

Task

There are 11 voters and 3 candidates A, B and C. The voters need to elect one candidate. They have different preferences.

Describe a method to elect the candidate which satisfies most voters.
Securing social interactions and networks

Problem

Suppose the preferences are distributed as follows:

voters

preference

3

A ≻ B ≻ C

2

A ≻ C ≻ B

2

B ≻ C ≻ A

4

C ≻ B ≻ A

▶ If each voter casts 1 vote, then the tally is 5:4:2 for A ≻ C ≻ B.

▶ If each voter casts 1+1 votes, then the tally is 9:8:5 for B ≻ C ≻ A.

▶ If each voter casts 2+1 votes, then the tally is 12:11:10 for C ≻ B ≻ A.
Securing social interactions and networks

Problem

Suppose the preferences are distributed as follows:

<table>
<thead>
<tr>
<th>voters</th>
<th>preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$A > B > C$</td>
</tr>
<tr>
<td>2</td>
<td>$A > C > B$</td>
</tr>
<tr>
<td>2</td>
<td>$B > C > A$</td>
</tr>
<tr>
<td>4</td>
<td>$C > B > A$</td>
</tr>
</tbody>
</table>
Securing social interactions and networks

Problem

Suppose the preferences are distributed as follows:

<table>
<thead>
<tr>
<th>voters</th>
<th>preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(A > B > C)</td>
</tr>
<tr>
<td>2</td>
<td>(A > C > B)</td>
</tr>
<tr>
<td>2</td>
<td>(B > C > A)</td>
</tr>
<tr>
<td>4</td>
<td>(C > B > A)</td>
</tr>
</tbody>
</table>

- If each voter casts 1 vote, then the tally is 5:4:2 for \(A > C > B \).
Securing social interactions and networks

Problem

Suppose the preferences are distributed as follows:

<table>
<thead>
<tr>
<th>voters</th>
<th>preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$A > B > C$</td>
</tr>
<tr>
<td>2</td>
<td>$A > C > B$</td>
</tr>
<tr>
<td>2</td>
<td>$B > C > A$</td>
</tr>
<tr>
<td>4</td>
<td>$C > B > A$</td>
</tr>
</tbody>
</table>

- If each voter casts 1 vote, then the tally is 5:4:2 for $A > C > B$.
- If each voter casts 1+1 votes, then the tally is 9:8:5 for $B > C > A$.
Securing social interactions and networks

Problem

Suppose the preferences are distributed as follows:

<table>
<thead>
<tr>
<th>voters</th>
<th>preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A > B > C</td>
</tr>
<tr>
<td>2</td>
<td>A > C > B</td>
</tr>
<tr>
<td>2</td>
<td>B > C > A</td>
</tr>
<tr>
<td>4</td>
<td>C > B > A</td>
</tr>
</tbody>
</table>

- If each voter casts 1 vote, then the tally is 5:4:2 for A > C > B.
- If each voter casts 1+1 votes, then the tally is 9:8:5 for B > C > A.
- If each voter casts 2+1 votes, then the tally is 12:11:10 for C > B > A.
Outline

Security examples

What is computer security?

- What is a computer?
- What is security

Structure of the course
What is a computer?

A computer performs computation:

- computation as calculation:
 - data processing through language, symbols, calculators...
- computation as communication:
 - data processing with other people, other computers, web...

Computation is:

- data processing (thinking, gene activation...)
- using tools (laptops, networks, tRNA...).
What is a computer?

A computer performs computation
What is a computer?

A computer performs computation:

▶ computation as **calculation**:
 ▶ data processing through language, symbols, calculators...
What is a computer?

A computer performs computation:

- computation as **calculation**:
 - data processing through language, symbols, calculators...

- computation as **communication**:
 - data processing with other people, other computers, web...
What is a computer?

A computer performs computation:

- computation as calculation:
 - data processing through language, symbols, calculators...

- computation as communication:
 - data processing with other people, other computers, web...

Computation is

- data processing (thinking, gene activation...)
- **using tools** (laptops, networks, tRNA...).
What is a computer?

Examples of computers

- pocket calculator, brake stabilizer, flight controller
- laptop, desktop, mainframe
- Google cluster, StormWorm botnet
- the Web
- networks: cell, tissue, organism
- social groups and networks...
What is a computer?

Examples of computers

- pocket calculator, brake stabilizer, flight controller
- laptop, desktop, mainframe
- Google cluster, StormWorm botnet
- the Web
- networks: cell, tissue, organism
- social groups and networks...

They all have their

- security requirements
- vulnerabilities
- attackers and adversaries
Software engineering

Program dependability

- **safety**: "bad things (actions) don’t happen"
- **liveness**: "good things (actions) do happen"
Software engineering

Program dependability

- **safety**: "bad things (actions) don’t happen"
- **liveness**: "good things (actions) do happen"

In sequential computation

- all first order constraints are dependability properties
Security engineering: Systems

Resource security (access control)

- **authorization**: "bad resource calls don’t happen"
- **availability**: "good resource calls do happen"

In an operating or a computer system

- all resource constraints are security properties
Information security

- **secrecy**: "bad information flows don’t happen"
- **authenticity**: "good information flows do happen"

In network computation

- all information flow constraints are security properties
Security engineering: Networks

Social choice (voting) and market economy

- **neutrality**: "bad data aggregations don’t happen"
- **fairness**: "good data aggregations do happen"

In social data processing

- all aggregation constraints are security properties
Security vs dependability

<table>
<thead>
<tr>
<th>processing</th>
<th>dependability</th>
<th>security</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>centralized</td>
<td>distributed</td>
</tr>
<tr>
<td>observations</td>
<td>global</td>
<td>local</td>
</tr>
<tr>
<td>Environment</td>
<td>neutral</td>
<td>adversarial</td>
</tr>
<tr>
<td>threats</td>
<td>accidents</td>
<td>attacks</td>
</tr>
</tbody>
</table>
Security implementation

Protection and enforcement counter attacks in three phases

- **prevention**: security properties cannot be breached
 - firewalls, cryptography
- **detection**: security breaches are detected
 - intrusion detection, digital forensics
- **policy**: recovery, penalties, incentives
 - legal measures (RIAA, MPAA), economics of security
 (cost of an attack must be higher than the expected profit of success)
Outline

Security examples

What is computer security?

Structure of the course
Structure of the course

- Security
 - Systems sec.
 - Resource sec.
 - Part 2
 - Networks sec.
 - Information sec.
 - Social sec.
 - Part 7
- Information sec.
 - Cryptography
 - Part 3
 - Protocols
 - Part 4
- Part 5
 - Web sec.
 - Part 6
 - Pervasive sec.