Security and Trust II: Information Assurance Part 1: Introduction

Peter-Michael Seidel

January 11, 2017

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

Structure

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Security examples

Securing resources: authorization Securing information: secrecy Securing information: authenticity Securing social interactions and networks

What is computer security?

Structure of the course

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples
Authorization
Secrecy
Authentication
Voting
Security?
Structure

・ロト・西・・田・・田・・日・

Digital Rights Management (DRM)

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples Authorization Secrecy Authentication

Voting Security? Structure ▲□▶▲□▶▲□▶▲□▶ □ のQ@

Digital Rights Management (DRM)

- art used to be bound to an artist
 - music was available only from a musician
 - a story from a storyteller
 - a painting could only be seen in one place

Peter-Michael Seidel

Examples
Authorization
Secrecy
Authentication
Voting
Security?
Structure

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Digital Rights Management (DRM)

- mass reproduction bound art to copiable media
 - copying technologies led to copyright-based markets
 - artists could sell lots of books and records
 - Copyright Management: branding, celebrities

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples Authorization Secrecy Authentication Voting Security? Structure

・ロト・日本・日本・日本・日本・日本

Digital Rights Management (DRM)

- digital networks freed art (science, religion...)
 from physical tokens (books, CDs...)
 - copying of digital content is essentially costless
 - Copyright Management becomes unviable
 - Digital Rights Management: seeks to
 - prevent (sandboxing, Vista...)
 - detect (watermarking ...)
 - deter (lawyers ...)

unauthorized copying of digital content

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples Authorization Secrecy Authentication Voting Security? Structure

Task: Fair deal of virtual cards

Design a P2P application for mobile devices to deal virtual cards.

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization

Secrecy

Authentication

Voting

Security?

Structure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problem

The players mistrust each other's device. The dealing device must not see the cards that it is dealing.

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization Secrecy

Authentication

Voting

Security?

Structure

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Problem

The players mistrust each other's device. The dealing device must not see the cards that it is dealing.

Hint

Each device can *encrypt* messages, i.e. make them unreadable for others.

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization Secrecy Authentication Voting

Security?

Structure

・ロト・西ト・山田・山田・山下

Problem

The players mistrust each other's device. The dealing device must not see the cards that it is dealing.

Hint

Each device can *encrypt* messages, i.e. make them unreadable for others. Encryptions can be removed in any order.

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization Secrecy Authentication Voting

Security?

Structure

Securing social computation

Special case: Virtual coin flipping

Flip a virtual coin (without using a physical coin).

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization Secrecy

Authentication

Voting

Security?

Structure

Securing social computation

Special case: Virtual coin flipping

Flip a virtual coin (without using a physical coin).

Variations: Millionaires' Problem

Two millionaires need to truthfully find out which one is richer, without telling how rich they are.

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization Secrecy

Authentication

Voting

Security?

Structure

Securing information: authenticity

Task

Spammers need lots of webmail accounts. They write bots who visit Hotmail, Yahoo! etc, to open disposable accounts, to distribute spam.

Design a protocol for setting up a webmail account which will be able to tell apart bots from humans.

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization

Secrecy

Authentication

Voting

Security?

Structure

First computer

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization

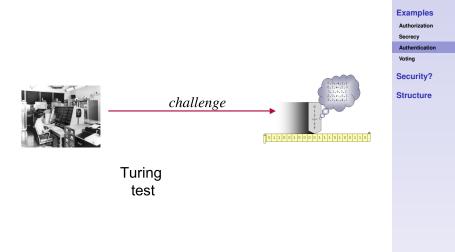
Secrecy

Authentication

Voting

Security?

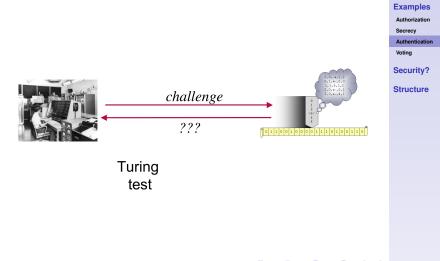
Structure


Turing machine

・ロト・日本・日本・日本・日本・日本

First authentication protocol

Security and Trust II: Information Assurance


Peter-Michael Seidel

First authentication protocol

Security and Trust II: Information Assurance

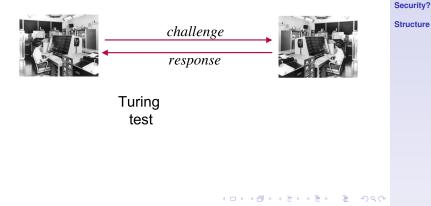
Peter-Michael Seidel

・ロト・日本・日本・日本・日本・日本

First authentication protocol

Security and Trust II: Information Assurance

Peter-Michael Seidel


Examples

Authorization

Secrecy

Authentication

Voting

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization

Secrecy

Authentication

Voting

Security?

Structure

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization

Secrecy

Authentication

Voting

Security?

Structure

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization

Secrecy

Authentication

Voting

Security?

Structure

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization

Secrecy

Authentication

Voting

Security?

Structure

シック・ 川 ・ 川 ・ 川 ・ 一日・

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization

Secrecy

Authentication

Voting

Security?

Structure

・ロト・日本・日本・日本・日本・日本

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization

Secrecy

Authentication

Voting

Security?

Structure

・ロト・日本・日本・日本・日本

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization

Secrecy

Authentication

Voting

Security?

Structure

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization

Secrecy

Authentication

Voting

Security?

Structure

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization

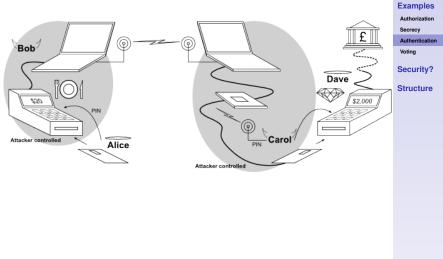
Secrecy

Authentication

Voting

Security?

Structure

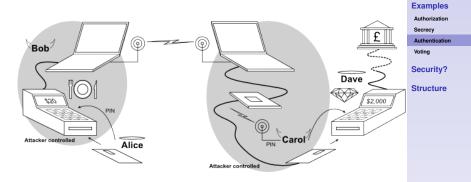

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Problem

Smart card relay attacks

Security and Trust II: Information Assurance

Peter-Michael Seidel


▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Problem

Smart card relay attacks

Security and Trust II: Information Assurance

Peter-Michael Seidel

This becomes much easier with NFC phones!

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Task

There are 11 voters and 3 candidates *A*, *B* and *C*. The voters need to elect one candidate. They have different preferences.

Describe a method to elect the candidate which satisfies most voters.

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples Authorization Secrecy

Authentication Voting

Security?

Structure

Suppose the preferences are distributed as follows:

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Authorization

Secrecy

Authentication

Voting

Security?

Structure

・ロト・西・モン・ボン・ロ・

Suppose the preferences are distributed as follows:

voters	preference
3	A > B > C
2	A > C > B
2	B > C > A
4	C > B > A

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples Authorization Secrecy Authentication Voting Security?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Suppose the preferences are distributed as follows:

voters	preference
3	A > B > C
2	A > C > B
2	B > C > A
4	C > B > A

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples	
Authorization	
Secrecy	
Authentication	
Voting	
Security?	
Structure	

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

• If each voter casts 1 vote, then the tally is 5:4:2 for A > C > B.

Suppose the preferences are distributed as follows:

voters	preference
3	A > B > C
2	A > C > B
2	B > C > A
4	C > B > A

Trust II: Information Assurance Peter-Michael

Security and

Seidel

Examples	
Authorization	
Secrecy	
Authentication	
Voting	
Security?	
Structure	

- If each voter casts 1 vote, then the tally is 5:4:2 for A > C > B.
- If each voter casts 1+1 votes, then the tally is 9:8:5 for B > C > A.

Suppose the preferences are distributed as follows:

voters	preference
3	A > B > C
2	A > C > B
2	B > C > A
4	C > B > A

Trust II: Information Assurance Peter-Michael

Security and

eter-Michae Seidel

Examples	
Authorization	
Secrecy	
Authentication	
Voting	
Security?	
Structure	

- If each voter casts 1 vote, then the tally is 5:4:2 for A > C > B.
- If each voter casts 1+1 votes, then the tally is 9:8:5 for B > C > A.
- If each voter casts 2+1 votes, then the tally is 12:11:10 for C > B > A

Outline

Security examples

What is computer security?

What is a computer?

What is security

Structure of the course

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

What is a computer?

What is security

Structure

・ロット 4回ッ 4回ッ 4回ッ 4日・

What is a computer?

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

What is a computer?

What is security

Structure

A computer performs computation

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

What is a computer?

What is security

Structure

・ロト・日本・日本・日本・日本

A computer performs computation:

- computation as calculation:
 - data processing through language, symbols, calculators...

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

What is a computer?

What is security

Structure

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

A computer performs computation:

- computation as calculation:
 - data processing through language, symbols, calculators...
- computation as communication:
 - data processing with other people, other computers, web...

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

What is a computer?

What is security

A computer performs computation:

- computation as calculation:
 - data processing through language, symbols, calculators...
- computation as communication:
 - data processing with other people, other computers, web...

Computation is

- data processing (thinking, gene activation...)
- using tools (laptops, networks, tRNA...).

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

What is a computer?

What is security

Examples of computers

- pocket calculator, brake stabilizer, flight controller
- laptop, desktop, mainframe
- Google cluster, StormWorm botnet
- the Web
- networks: cell, tissue, organism
- social groups and networks...

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

What is a computer?

What is security

Structure

・ロト・西ト・山田・山田・山下

Examples of computers

- pocket calculator, brake stabilizer, flight controller
- laptop, desktop, mainframe
- Google cluster, StormWorm botnet
- the Web
- networks: cell, tissue, organism
- social groups and networks...

They all have their

- security requirements
- vulnerabilities
- attackers and adversaries

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

What is a computer?

What is security

Structure

・ロト・日本・日本・日本・日本・日本

Software engineering

Program dependability

- safety: "bad things (actions) don't happen"
- liveness: "good things (actions) do happen"

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

What is a computer?

What is security

Structure

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Software engineering

Program dependability

- safety: "bad things (actions) don't happen"
- liveness: "good things (actions) do happen"

In sequential computation

all first order constraints are dependability properties

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

What is a computer?

What is security

Security engineering: Systems

Resource security (access control)

- authorization: "bad resource calls don't happen"
- availability: "good resource calls do happen"

In an operating or a computer system

all resource constraints are security properties

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

What is a computer?

What is security

Structure

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Security engineering: Systems

Information security

- secrecy: "bad information flows don't happen"
- authenticity: "good information flows do happen"

In network computation

all information flow constraints are security properties

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

What is a computer?

What is security

Security engineering: Networks

Social choice (voting) and market economy

- neutrality: "bad data aggregations don't happen"
- fairness: "good data aggregations do happen"

In social data processing

all aggregation constraints are security properties

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

What is a computer?

What is security

Security vs dependability

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

What is a computer?

What is security

processing	dependability	security
System	centralized	distributed
observations	global	local
Environment	neutral	adversarial
threats	accidents	attacks

Security implementation

Protection and enforcement counter attacks in three phases

- prevention: security properties cannot be breached
 - firewalls, cryptography
- detection: security breaches are detected
 - intrusion detection, digital forensics
- policy: recovery, penalties, incentives
 - legal measures (RIAA, MPAA), economics of security (cost of an attack must be higher than the expected profit of success)

Security and Trust II: Information Assurance

Peter-Michael Seidel

Examples

Security?

What is a computer?

What is security

Outline

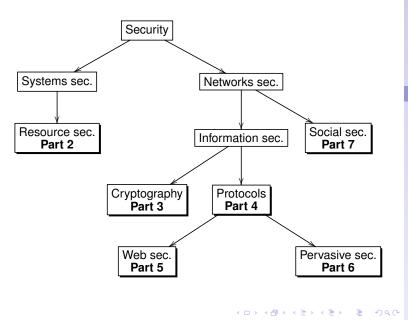
Security examples

What is computer security?

Structure of the course

Security and Trust II: Information Assurance

Peter-Michael Seidel


Examples

Security?

Structure

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Structure of the course

Security and Trust II: Information Assurance Peter-Michael

Peter-Michael Seidel

Examples

Security?