

Topics for Chapter 20

- I. Irreversible processes
- II. Definition of entropy and the Second Law
- III. Heat engine
- IV. Reversible heat engine, most efficient heat engine, the Carnot Cycle
- V. Refrigerator

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-We

I. Natural directions for thermodynamic processes

- Heat naturally flows from an hot object to a cold object ("naturally" means occurs spontaneously without the need of an external force)
- A piece of iron naturally gets rusty with time rather than gets shiny
- · An orderly room naturally becomes disorder with time.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

- These processes reflect nature's tendency to go from a non-equilibrium (a more ordered state) to an equilibrium state (a more disordered state) (According to statistical mechanics, the more disordered state is more probable, hence it tends to occur.)
- These processes are called "*irreversible*" process because their reverse processes (e.g. heat flow from cold object to hot object) do not occur naturally,.
- However, the reverse processes can occur by supplying energy to force order from disorder (e.g. a refrigerator moves heat from cold object to hot object, but you have to supply energy to the refrigerator).

II. Entropy and the Second Law of Thermodynamics

• The Second Law of Thermodynamics defines a state variable called "entropy" (S) to quantify the direction of natural processes. S is a function of (T,V,N), see example below

Equilibrium

Non-equilibrium

 $S_i = S_A (T_A^{i}) + S_B (T_B^{i})$

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

T _Af = T _Bf=T^f

The total initial entropy

Second Law : $S_f > S_i$ (the equilibrium state is more probable)

Find the values indicated in the figure.	$T_{\rm H} = 500 \rm K$
Note; In order to achieve max. efficiency, the high temperature of the Carnot cycle must equal to the temperature of the hot reservoir, and the cold temperature of the Carnot cycle must equal to the temperature of the cold reservoir. ⇒heat flow is extremely slow (in fact no heat flow) => most efficient engine is the	$Q_{H} = 2000 J$ W = ? e = ? $Q_{C} = ?$ $T_{C} = 350 K$

Optional: Entropy function for a monatomic ideal gas
This is NOT in your text.
Start with definition:
$$dS = \frac{dQ}{T}$$

Apply First Law : $dQ = dU + dW = dU + PdV$
For monatomic gas: $dU = \frac{3}{2}NkdT$ & $P = \frac{NkT}{V}$
 $\Rightarrow dS = \frac{3}{2}Nk\frac{dT}{T} + Nk\frac{dV}{V}$
 $\int_{i}^{f} dS = \int_{i}^{f} \frac{3}{2}Nk\frac{dT}{T} + Nk\frac{dV}{V}$
 $S_{f} - S_{i} = \frac{3}{2}Nk\ln\frac{T_{f}}{T_{i}} + Nk\ln\frac{V_{f}}{V_{i}}$
 $\Rightarrow S(N,T,V)$ is a state variable. You calculate the entropy
of the system, once you know N,T,V.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

