Chapter 15

Mechanical Waves

[^0]Lectures by James Pazun Modified by P. Lam 8/2/2010

[^1]
Topics for Chapter 15

- What is a mechanical wave motion
- Properties of mechanical waves
- Mathematical description of traveling wave
- Energy carried by in traveling wave
- Superposition of waves
- Standing waves

What is a mechanical wave motion?

- Create a disturbance in one region of medium
- The propagation of this disturbance to other regions of the medium = mechanic wave
- Note: the medium must be elastic (it has some kind of restoring force) and has inertia (mass)
- See examples below (identify the medium and the restoring force(s)):
(a) Transverse wave on a string

(b) Longitudinal wave in a fluid

particle of the fluid moves forward and then back, parallel
to the motion of the wave itself.
(c) Waves on the surface of a liquid

As the wave passes, each particle of the liquid moves in a circle.

Do all waves require a medium to travel?

- ALL "mechanical" waves require a medium to travel.
- Exception: Electromagnetic waves (radio wave, microwave, visible light, ultraviolet, X-ray, gamma rays, etc) can travel through empty space (vacuum)

Types of waves

- Longitudinal waves - Waves that have disturbance parallel to the direction of wave propagation are called longitudinal wave
- Transverse waves -Waves that have disturbance perpendicular to the direction of propagation. Identify the waves below as longitudinal or transverse.
(a) Transverse wave on a string

(b) Longitudinal wave in a fluid

As the wave passes, each particle of the fluid moves forward and then back, parallel to the motion of the wave itself.
(c) Waves on the surface of a liquid

As the wave passes, each particle of the liquid surface moves in a circle.

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

Wave speed

- Wave speed depends on the properties of the medium
$\mathrm{v}=\sqrt{\frac{\text { Magnitude of restoring force }}{\text { Inertia of the medium }}}$
$e . g$. wave speed of a rope under tension:

$$
\mathrm{v}=\sqrt{\frac{\mathrm{F}}{\mu}} ; \quad F=\text { tension }, \quad \mu=\frac{\text { mass }}{\text { length }}=\frac{k g}{m}
$$

$$
\text { check unit: } \mathrm{F}=\mathrm{kg} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

$$
\sqrt{\frac{\mathrm{F}}{\mu}}=\sqrt{\frac{\mathrm{kgm}}{\mathrm{~s}^{2}} \cdot \frac{\mathrm{~m}}{k g}}=\frac{m}{s}
$$

Other examples:
(1) Sound velocity depends on the medium:air vs. solid (both magnitude of restoring force and inertia are different in these two media).
(2) Longitudinal earthquake waves (P-wave) is faster than the transverse earthquake wave (S-wave) - the magnitude of compressional restoring force (P wave) is greater than the shear restoring force (S-wave).

Waveform - examples

- Traveling wave pulse - generated by a pulsed driving force
- Traveling periodic wave (harmonic wave) - generated by a continuous driving force

Mathematically (the amplitude of) a travelling is described by:
$\vec{A}(x, t)=f(x-v t) \hat{n}$
(a)The function f describes the shape of the wave
(e.g. for periodic wave, it may cosine: $\vec{A}(x, t)=A_{\text {max }} \cos (x-v t) \widehat{n}$)
(b) The dependence on x and t in this form x -vt signifies that it is
a travelling wave along the x -direction;
$\mathrm{v}=$ positive $=>$ travelling in positive x -direction
$v=$ negative $=>$ travelling in negative x-direction
(c) The direction of the amplitude is denoted by the unit vector \hat{n}.

Example: If the wave is longitudinal and it travels along the x-direction,then $\hat{\mathrm{n}} \hat{\mathrm{i}}$.
If the wave is transverse and transverse and it travels along x-direction, then $\hat{n}=\hat{j}$ or $\hat{n}=\hat{k}$
Q . Write a general expression for a longitudinal wave travelling in the negative y -direction with a wave speed of $10 \mathrm{~m} / \mathrm{s}$.

Transverse Periodic wave

- A detailed look at periodic transverse waves will allow us to extract parameters.

Motion of the wave Amplitude A

- The SHM of the spring and mass generates a sinusoidal wave in the string. Each particle in the string exhibits the same harmonic motion as the spring and mass; the amplitude of the wave is the amplitude of this motion.

$$
\begin{aligned}
\vec{A}(x, t) & =A \widehat{j} \cos \left[\frac{2 \pi}{\lambda} x-\frac{2 \pi}{T} t\right] \\
& =A \widehat{j} \cos \left[\frac{2 \pi}{\lambda}\left(x-\frac{\lambda}{T} t\right)\right] \\
& =A \widehat{j} \cos \left[\frac{2 \pi}{\lambda}(x-v t)\right] ; \quad v=\frac{\lambda}{T}=\lambda f
\end{aligned}
$$

Longitudinal Periodic waves

Refer to Example 15.1.

Forward motion of the plunger creates a compression (a zone of high density); backward motion creates a rarefaction (a zone of low density).

Plunger oscillating

 in SHM

Longitudinal waves are shown at intervals of $\frac{1}{8} T$ for one period T.

Particle velocity vs. wave velocity

- Consider a transverse wave on a rope
(a) Wave at $t=0$

(b) The same wave at $t=0$ and $t=0.05 T$

- Acceleration a_{y} at each point on the string is proportional to displacement y at that point.
- Acceleration is upward where string curves upward, downward where string curves downward.

$$
\vec{A}(x, t)=A \cos \left[\frac{2 \pi}{\lambda}(x-v) t\right] \hat{j}
$$

$$
\text { Particle velocity }=\frac{\mathrm{d} \vec{A}(x, t)}{d t}=A \frac{2 \pi}{\lambda} v \sin \left[\frac{2 \pi}{\lambda}(x-v) t\right] \hat{j}
$$

$$
\Rightarrow \text { Maximum particle speed }=\left|A \frac{2 \pi}{\lambda} v\right|=|A 2 \pi f|=\left|A \frac{2 \pi}{T}\right|
$$

Energy (or Power) carried by a wave

As the wave travels along the medium, it transports the energy that it carries.

$\frac{\text { transported kinetic energy }}{\text { time }}=\frac{1}{2} \frac{\text { mass }}{2}$ length $(\text { particle velocity })^{2} \cdot($ wave velocity $)$
Example: Periodic wave

$$
\begin{aligned}
& =\frac{1}{2} \mu\left(A \omega \sin \left[\frac{2 \pi}{\lambda}(x-v) t\right]\right)^{2} \cdot v \\
& =\frac{1}{2} \mu v \omega^{2} A^{2}\left(\sin \left[\frac{2 \pi}{\lambda}(x-v) t\right]\right)^{2}
\end{aligned}
$$

The $\frac{\text { transported potential energy }}{\text { time }}$ give exactly the same term
\Rightarrow Total instantaneous power $=\mathrm{P}=\mu v \omega^{2} A^{2}\left(\sin \left[\frac{2 \pi}{\lambda}(x-v) t\right]\right)^{2}$
\Rightarrow Average power $=\frac{1}{2} \mu \nu \omega^{2} A^{2} \quad($ because sine square $=1 / 2)$

Wave intensity

- Go beyond the wave on a string and visualize, say ... a sound wave spreading from a speaker. That wave has intensity dropping as $1 / r^{2}$ due to conservation of energy.

$$
\text { Intensity }=\frac{\text { Energy/time }}{\text { area }}=\frac{\text { Power }}{4 \pi r^{2}}
$$

Source of waves

Mathematical connection between wave pulse and periodic waves

A wave pulse can be thought of as a superposition of many periodic waves with various wavelengths and frequencies Fourier's Theorem.

Any fucntion $f(x)$ can be expressed as
a sum of cosine and sine fucntions of
various wavelengths:

$$
f(x)=\sum_{\lambda} A_{\lambda} \cos \left(\frac{2 \pi}{\lambda} x\right)+B_{\lambda} \sin \left(\frac{2 \pi}{\lambda} x\right)
$$

Non-dispersive vs dispersive medium

- A non-dispersive medium is one where all wavelengths have same wave velocity. For example: ALL electromagnetic waves traveling in vaccuum have the same wave velocity $\sim 3 \times 10^{8} \mathrm{~m} / \mathrm{s}$). Another example is wave along a tight rope is is approximately non-dispersive,

$$
v=\sqrt{\frac{F}{\mu}} \quad \text { independent of } \lambda
$$

In a non-dispersive medium, a wave pulse does not disperse (spread out) as it travels, see figure on the right.

Non-dispersive vs dispersive medium

- Almost all media are dispersive (the only true nondispersive medium is the vaccum!)
- For example: Electromagnetic waves (light) travels inside a piece glass have wave velocities depending on the wavelength of light; red and blue light have different wave velocity $=>$ white light entering a piece of glass (a prism) will disperse into different colors.
- Dispersion of wave pulse prevents digital signal to travel long distance; eventually the pulse shape will be distorted.

Standing waves on a string - resonance frequencies

- Although a wave traveling along a string can have any wavelength, a string with both ends fixed have certain "preferred" wavelengths (or resonance frequencies) - (e.g. guitar).
(a) String is one-half wavelength long.

(d) String is two wavelengths long.

(b) String is one wavelength long.

(c) String is one and a half wavelengths long.

(e) The shape of the string in (b) at two different instants

$N=$ nodes: points at which the string never moves
$A=$ antinodes: points at which the amplitude of string motion is greatest

[^2]
Calculation of resonance wavelength (or frequencies)

Given: The length of a guiter string is 0.3 m .
Find the first three "resonance" wavelengths.
(a) String is one-half wavelength long.

$$
\frac{\lambda_{1}}{2}=L \Rightarrow \lambda_{1}=2 L=2(0.3)=0.6 \mathrm{~m}
$$

(b) String is one wavelength long.

$$
\lambda_{2}=L \Rightarrow \lambda_{2}=0.3 \mathrm{~m}
$$

(c) String is one and a half wavelengths long.

$$
\frac{3 \lambda_{3}}{2}=L \Rightarrow \lambda_{3}=\frac{2}{3} L=\frac{2}{3}(0.3)=0.2 \mathrm{~m}
$$

Calculation of resonance wavelength (normal modes)

Given: The length of a guiter string is 0.3 m .
Find the first three "resonance" frequencies.
What additional information do we need?
(a) String is one-half wavelength long,

$$
\frac{\lambda_{1}}{2}=L \Rightarrow \lambda_{1}=2 L=2(0.3)=0.6 \mathrm{~m}
$$

(b) String is one wavelength long

$$
\lambda_{2}=L \Rightarrow \lambda_{2}=0.3 \mathrm{~m}
$$

(c) String is one and a half wavelengths long.

$$
\frac{3 \lambda_{3}}{2}=L \Rightarrow \lambda_{3}=\frac{2}{3} L=\frac{2}{3}(0.3)=0.2 \mathrm{~m}
$$

[^0]: PowerPoint ${ }^{\circledR}$ Lectures for
 University Physics, Twelfth Edition

 - Hugh D. Young and Roger A. Freedman

[^1]: Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

[^2]: Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

