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Topics for Chapter 15

What is a mechanical wave motion
Properties of mechanical waves
Mathematical description of traveling wave
Energy carried by 1n traveling wave
Superposition of waves

Standing waves

Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley



What is a mechanical wave motion?

* Create a disturbance in one region of medium

* The propagation of this disturbance to other regions of the medium =
mechanic wave

*  Note: the medium must be elastic (it has some kind of restoring force) and
has inertia (mass)

*  See examples below (identify the medium and the restoring force(s)):

(a) Transverse wave on a string

forward and then back, parallel

Motion of the wave v
v Particles of the string ’
_——3 — cles s g PR As the wave passes, each
RS A 3 particle of the string moves up
o ¢ - ©] s ¥ v R and then down, transversely to
T — - § fidird
< = ,jJ the motion of the wave itself.
~—Lr
Particles of the fluid
As the wave passes, each
_’_ DS _’ v S particle of the fluid moves
> ‘ >~ o —

to the motion of the wave itself.

/

v
/] < — T As the wave passes, each
_ r\’ particle of the liquid surface
¥ RO moves in a circle.
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Do all waves require a medium to travel?

- ALL “mechanical” waves require a medium to travel.

* Exception: Electromagnetic waves (radio wave, microwave,
visible light, ultraviolet, X-ray, gamma rays, etc) can travel
through empty space (vacuum)
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Types of waves

Longitudinal waves - Waves that have disturbance parallel to the direction of
wave propagation are called longitudinal wave

Transverse waves -Waves that have disturbance perpendicular to the direction
of propagation. Identify the waves below as longitudinal or transverse.

(@) Transverse wave on a string

g Motion of the wave . . . v
— Pariclesof the sting——_ . = e As the wave passes, each
particle of the string moves up

and then down, transversely to
the motion of the wave itself.

Particles of the fluid
//\\ As the wave passes, each
> v v At particle of the fluid moves
— » - - ®< >0 0O« » [ sy . )
I i forward and then back, parallel
to the motion of the wave itself.

Surface particles of the liquid

/ /‘ S st As the wave passes, each
@ (\Q particle of the liquid surface
S

& / : .
N moves in a circle.
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‘Wave speed

* Wave speed depends on the properties of the medium

Magnitude of restoring force

V=
Inertia of the medium

e.g. wave speed of a rope under tension:

F k
v=|—; F =tension, U= s 8
u length m

check unit: F=kg Ez
S

E_ [kem m _m
u s> kg s

Other examples:

(1) Sound velocity depends on the medium:air vs. solid (both magnitude of
restoring force and inertia are different in these two media).

(2) Longitudinal earthquake waves (P-wave) is faster than the transverse
earthquake wave (S-wave) - the magnitude of compressional restoring force (P-
wave) is greater than the shear restoring force (S-wave).
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Waveform - examples

* Traveling wave pulse - generated by a pulsed driving force

* Traveling periodic wave (harmonic wave) - generated by a

continuous driving force
Mathematically (the amplitude of) a travelling is described by:
A(x,t) = f(x=vt)n
(a)The function f describes the shape of the wave
(e.g. for periodic wave, it may cosine: A(x,t) = A, cos(x —vt)n)
(b)The dependence on x and t in this form x-vt signifies that it is
a travelling wave along the x-direction;
v = positive => travelling in positive x-direction
v=negative => travelling in negative x-direction
(¢) The direction of the amplitude is denoted by the unit vector n.
Example: If the wave is longitudinal and it travels along the x-direction,then f=i.
If the wave is transverse and transverse and it travels along x-direction, then ﬁzﬁ or fi=k
Q. Write a general expression for a longitudinal wave travelling in the negative y-direction

with a wave speed of 10 m/s.
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Transverse Periodic wave

A detailed look at
periodic transverse
waves will allow us to
extract parameters.

) A

: Motion of the wave

>

Amplitude A

& Amplitude A
The SHM of the spring and mass generates a sinusoidal

wave in the string. Each particle in the string exhibits the
same harmonic motion as the spring and mass; the

amplitude of the wave is the amplitude of this motion.

3 02 2
A(x,t) = Aj cos Tﬂ:x _ 2,

T
= Af Cos

= Af Ccos
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The string is shown at time intervals of 7 period

for a total of one period 7. The highlighting

shows the motion of one wavelength of the wave
Oscillator

generating wave
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The wave advances

by one wavelength A
during each period 7.
Each point moves up and down in

place. Particles one wavelength apart

move in phase with each other.



Longitudinal Periodic waves

Refer to Example 15.1.

Forward motion of the plunger creates

Longitudinal waves are shown at intervals of
s :
< I for one period T.

a compression (a zone of high density);

Plunger Two particles in the medium,
backward motion creates a rarefaction moving in one wavelength A apart
(a zone of low density). SHM
i 1 A 1 N
Plunger oscillating t=0 i e
in SHM e " \ S
Compression Rarefaction - %T ,:‘l '@ '@
«> | | m H
| I ,

f= 2T|:< p j
4 8 t\ T\\
! b= %T ‘\ l‘\\
Y G Kk—2—  wave speed

A \!
: 4 \ \
; : t= gT Q @
The wavelength A is the distance between W .
e : SR & S OERASER, 04 W \\
corresponding points on successive cycles. S A o
t==T ‘@ @
1 N
| \

- . ]2 2 r=4T $ o
A(x,t) = Ai cos dd X - dd t 4 y
A T

e
o*
o®

Particles oscillate The wave advances
with amplitude A. by one wavelength A

during each period 7.
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Particle velocity vs. wave velocity

* Consider a transverse wave on a rope
(@) Waveattr =0 (b) The same wave at = 0 and t = 0.05T

vy = 0 v,

* Acceleration a, at each point on the string is proportional to displacement y at that point.
* Acceleration is upward where string curves upward, downward where string curves downward.

A(x,f) = Acos %(x—v)t J

dA(x,t) 2x . [2«

Particle velocity = = A2 ysinl 2= (x = v)t|7
y ” 7 A( )t|J

= Maximum particle speed =l A%v =l A27f =l Az% |
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Energy (or Power) carried by a wave

As the wave travels along the medium, it transports the
energy that it carries.

transported kinetic energy _ 1 mass (particle Velocity)2 « ( wave velocity)

time 2 length

Example : Periodic wave

2Tﬂ(x —v)tD °y

27‘% (x - v)tD

transported potential energy

1
=—ul Awsin
5

— %Mva)zAz(sin

The

. give exactly the same term
time

2
= Total instantaneous power =P = uvszz(sin[%n (x - v)tD

= Average power = %MvoozA2 (because sine square = 1/2)
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Wave intensity

* Go beyond the wave on a string and visualize, say ... a
sound wave spreading from a speaker. That wave has

intensity dropping as 1/r> due to conservation of energy.
Energy/time  Power

Intensity =

2
area 4tr
At distance r At a greater distance
from the source, ry > ry, the intensity
the intensity is /;. I, is less than /,: the

same power is spread
over a greater area.

Source of waves
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Mathematical connection between wave pulse and periodic waves

A wave pulse can be thought of as a superposition of many
periodic waves with various wavelengths and frequencies -
Fourier’ s Theorem.

Any fucntion f(x) can be expressed as
a sum of cosine and sine fucntions of

various wavelengths:

2 . (27
f(x)= ;Ak COS(T x) + B, s1n(7 x)
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Non-dispersive vs dispersive medium

* A non-dispersive medium is one
where all wavelengths have same
wave velocity. For example: ALL
electromagnetic waves traveling in
vaccuum have the same wave
velocity ~ 3x10% m/s). Another
example 1s wave along a tight rope 1s
1s approximately non-dispersive,

v = \/E independent of A
u

In a non-dispersive medium, a wave pulse
does not disperse (spread out) as it travels, see
figure on the right.
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Non-dispersive vs dispersive medium

* Almost all media are dispersive (the only true non-
dispersive medium is the vaccum!)

* For example: Electromagnetic waves (light) travels
inside a piece glass have wave velocities depending on
the wavelength of light; red and blue light have different
wave velocity => white light entering a piece of glass (a
prism) will disperse into different colors.

* Daispersion of wave pulse prevents digital signal to
travel long distance; eventually the pulse shape will be
distorted.
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Standing waves on a string - resonance frequencies

* Although a wave traveling along a string can have any
wavelength, a string with both ends fixed have certain “preferred”

wavelengths (or resonance frequencies) - (e.g. guitar).

(@) String is one-half wavelength long. (b) String is one wavelength long. (c) String is one and a half wavelengths long.

(d) String is two wavelengths long.

N N = nodes: points at which the

V4 ‘ :
/ : String never moves

/ ; A = antinodes: points at which
S the amplitude of string motion
N : is greatest
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Calculation of resonance wavelength (or frequencies)

Given : The length of a guiter string is 0.3m.

Find the first three "resonance" wavelengths.

(a) String is one-half wavelength long.

A L= 4 =20=2003)=0.6m

(b) String is one wavelength long.

() String is one and a half wavelengths long.
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Calculation of resonance wavelength (normal modes)

Given : The length of a guiter string is 0.3m.

Find the first three "resonance" frequencies.

What additional information do we need?

(a) String is one-half wavelength long.

A L= A =20=2003)=0.6m

(b) String is one wavelength long.

(€) String is one and a half wavelengths long.
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