Chapter 4

Motion in Two and Three Dimensions

Pui Lam

Learning Goals for Chapter 4

- Recognize that in 2 or 3-dimensions that the velocity vector and the acceleration vector need not be parallel.
(a)

(b)

(c)

- Be familiar with the following 2-D examples:
- projectile motion
- uniform and non-uniform circular motion
- general curve motion
- Know how to calculate relative velocity

Position relative to the origin-Figure 3.1

- For general motion in 3-dimension, the position vector relative to your chosen origin will have components in x, y, and z directions. The path of a particle is generally a curve in 3-D space.

$\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ Q : How do calculate the instantaneous velocity, $\overrightarrow{\mathrm{v}}(\mathrm{t})$, and instantaneous acceleration, $\vec{a}(\mathrm{t})$?

Average velocity and Instantaneous velocity-Figure 3.2

- The instantaneous velocity at a given location is a vector tangent to the path.

$$
{ }^{* *} \text { Instantaneous velocity }=\overrightarrow{\mathrm{v}} \equiv \frac{\mathrm{~d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k}
$$

Velocity (vector) vs. Speed

- Velocity is a vector. Example

Given $\overrightarrow{\mathrm{v}} \equiv \frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k}=(3 \hat{i}+4 \hat{j}+5 \hat{k}) \frac{m}{s}$
How to find the speed?

Example of a 2-D motion - Projectile motion

- A projectile is any object that follows a path determined by the effects of gravity, air resistance, and wind, given an initial velocity.
- If air resistance and wind are negligible, then projectile motion $=$ motion under constant acceleration, $a_{x}=0$ and $a_{y}=-g$

Horizontally, the projectile exhibits constant-velocity motion: Its horizontal acceleration
is zero, so it moves equal x-distances in equal time intervals.

[^0]
Equations for Projectile Motion (neglect air-resistance)

- Find $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ for a projectile motion given its initial position and initial velocity.
- Calculate the subsequent velocity as a function of time.

Vertically, the projectile exhibits constant-acceleration motion in response to the earth's gravitational pull. Thus, its vertical velocity changes by equal amounts during equal time intervals.

[^1]
Projectile motion - numerical example I

Q. Given: $\mid \overline{\mathrm{v}}_{\mathrm{o}}=10 \mathrm{~m} / \mathrm{s}, \alpha_{\mathrm{o}}=30^{\circ}$, and
$g \sim 10 \mathrm{~m} / \mathrm{s}^{2}$. (Assume no air resistance)
(1) Find the time it reaches the top.
(2) Find the velocity vector at the top
(3) Find the range.
(4) Find the velocity vector when it returns to the ground

Horizontally, the projectile exhibits constant-velocity motion: Its horizontal acceleration
is zero, so it moves equal x-distances in equal time intervals.

[^2]
Effect of air resistance

Q. Sketch the path if there is air -resistance.

Horizontally, the projectile exhibits constant-velocity motion: Its horizontal acceleration is zero, so it moves equal x-distances in equal time intervals.

The instantaneous acceleration vector-Figure 3.6

- The acceleration vector is non-zero as long as there is a change in the velocity vector.
- The change can be either the magnitude OR the direction of the velocity, OR both.
- In 2- and 3-dimension, acceleration vector needs not be in the same direction of velocity vector. Example: Car going around a curve.
(a)
(b)

(c)

Uniform circular motion and centripetal acceleration

For circular motion:
$\mathrm{x}(\mathrm{t})=\mathrm{r} \cos \theta(\mathrm{t}), \quad \mathrm{y}(\mathrm{t})=\mathrm{r} \sin \theta(\mathrm{t})$
For uniform circular motion:
θ increases uniformly $\Rightarrow \theta(\mathrm{t})=\omega \mathrm{t}$
$\Rightarrow \mathrm{x}(\mathrm{t})=\mathrm{r} \cos \omega \mathrm{t}, \quad \mathrm{y}(\mathrm{t})=\mathrm{r} \sin \omega \mathrm{t}$
(e.g. $10 \mathrm{rpm} \Rightarrow \omega=10(2 \pi \mathrm{rad}.) / 60 \mathrm{~s}$)

From these, one can calc; $\vec{v}(\mathrm{t})$ and $\overrightarrow{\mathrm{a}}(\mathrm{t})$
(You fill in the details)
Result:
(a) Uniform circular motion

$\left|\vec{a}_{c}\right|=\frac{|\overrightarrow{\mathrm{v}}|^{2}}{\mathrm{r}} ; \quad|\overrightarrow{\mathrm{v}}|=$ magnitude of velocity=speed
Note: In uniform circular motion, the "speed" is unchanged, but the velocity vector changes $=>$ there is an acceleration. The acceleration is called "centripetal acceleration" - pointing to the center.

Example of non-uniform circular motion

- "Circular motion" doesn't mean a complete circle, could be part of a circle or any curve.
- In non-uniform circular motion, the speed is NOT

Acceleration - daily usage vs. physics usage

Car speeding up along a circular path
Component of acceleration parallel to velocity: Changes car's speed

$\vec{v} \bullet \vec{a}>0 \Rightarrow$ speeding up

Car slowing down along a circular path

$\vec{v} \bullet \vec{a}<0 \Rightarrow$ slowing down

Uniform circular motion: Constant speed along a circular path

$\vec{v} \bullet \vec{a}=0 \Rightarrow$ constant speed

In daily language, acceleration means speeding up and deceleration means slowing down.

In Physics, acceleration (vector) = change of velocity (vector) wrt time.
An object has a non-zero acceleration (vector) whenever there is a change in velocity (vector); the object can be speeding up, slowing down, or keeping the same speed.

Relative velocity on a straight road

- What is the velocity vector of the Truck with respect to you?

$$
\begin{aligned}
& \text { Let } \overrightarrow{\mathrm{V}}_{\mathrm{TE}}=-20 \hat{\mathrm{j}} ; \quad \overrightarrow{\mathrm{V}}_{\mathrm{YE}}=+30 \hat{\mathrm{j}} \\
& \overrightarrow{\mathrm{~V}}_{\mathrm{TY}}=\overrightarrow{\mathrm{V}}_{\mathrm{TE}}+\overrightarrow{\mathrm{V}}_{\mathrm{EY}} \\
& \Rightarrow \overrightarrow{\mathrm{~V}}_{\mathrm{TY}}=\overrightarrow{\mathrm{V}}_{\mathrm{TE}}-\overrightarrow{\mathrm{V}}_{\mathrm{YE}} \\
& =-20-30=-50 \mathrm{j}
\end{aligned}
$$

Same formula applies for 2- or 3-dimensiosn.

$$
\text { Example }: \overrightarrow{\mathrm{V}}_{\mathrm{TIE}}=-20 \hat{j}, \overrightarrow{\mathrm{~V}}_{\mathrm{YIE}}=30 \hat{j}
$$

Relative velocity in two or three dimensions

- Find the velocity of the passenger with respect to the bicyclist (Ignore the middle diagram).
(a)

(c) Relative velocities (seen from above)

Question: The compass of an airplane indicates that it is headed north and the plane is moving at $240 \mathrm{~km} / \mathrm{hr}$ through the air. If there is wind of $100 \mathrm{~km} / \mathrm{hr}$ from west to east, what is the velocity of the plane relative to the ground?

[^0]: Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

[^1]: Horizontally, the projectile exhibits constant-velocity motion: Its horizontal acceleration
 is zero, so it moves equal x-distances in equal time intervals.

[^2]: Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

