Ph170 General Physics

Ch. 3 Motion Along a Straight Line Kinematics
 Pui K. Lam

Topics \& Learning Outcomes

1. Position measurement, $x(t)$ or $y(t)$ - this function contains all the information about the motion of an object.
2. Useful concepts: Average velocity, Instantaneous velocity and instantaneous acceleration
Learning outcomes:
3. Able to deduce instantaneous velocity and instantaneous acceleration from the graph of $x(t)$.
4. Given the function $x(t)$, able to calculate instantaneous velocity, $\mathrm{v}(\mathrm{t})$, and Instantaneous acceleration, $a(\mathrm{t})$, by differentiation
5. Given $a(t)$, able to calculate $v(t)$ and $y(t)$ by integration

Position measurement

(1)Set up coordinate system. (2) Measure position from origin. (3) Graph position vs. time.

Camcorder: 30 fps
Position vs. time

Note: space between images are further apart => ball drops faster and faster.

From the graph, we can calculate the average velocity for each time interval.
Activity: Calculate the average velocity for the time interval from 0.4 s to 0.5 s

Average velocity

Position vs. time

Camcorder: 30 fps
Average velocity between t_{i} and $\mathrm{t}_{f}=\overline{\mathrm{v}} \equiv \frac{y\left(t_{f}\right)-y\left(t_{i}\right)}{t_{f}-t_{i}} \hat{j}$
e.g. between $\mathrm{t}_{i}=0.4 \mathrm{~s}$ and $\mathrm{t}_{f}=0.5 \mathrm{~s}, \overline{\mathrm{v}} \approx \frac{0.775-1.216}{0.500-0.400} \hat{j}=-4.41 \frac{\mathrm{~m}}{\mathrm{~s}} \hat{j}$

Average velocity =average slope of y vs. t between t_{i} and t_{f}
Why is it called "average" velocity?
How do we calculate instantaneous velocity?

Instantaneous velocity and instantaneous acceleration

- Suppose we fit the camcorder data with a smooth function, $\vec{y}(t)=\left(2-4.9 t^{2}\right) \hat{j}$
Instantaneous velocity
=slope of the tangent line
$=$ first derivative of y wrt t :
$\Rightarrow \overrightarrow{\mathrm{v}}(\mathrm{t}) \equiv \frac{\mathrm{d} \overrightarrow{\mathrm{y}}}{\mathrm{dt}}=(-9.8 t) \hat{\mathrm{j}}$
Instantaneous acceleration=

$$
\overrightarrow{\mathrm{a}}(\mathrm{t}) \equiv \frac{d \vec{v}}{d t}=\left(-9.8 \frac{m}{s^{2}}\right) \hat{j}
$$

Challenge:
(1) Use these equations find the velocity at $t=0.4 \mathrm{~s}$ and $\mathrm{t}=0.5 \mathrm{~s}$.
(Compare them with the average velocity found in the previous slide.)
(2) Find t when the ball hits the ground.

Graphical interpretation of $\mathrm{v}(\mathrm{t})$ and $\mathrm{a}(\mathrm{t})$

$\overrightarrow{\mathrm{v}}(\mathrm{t}) \equiv \frac{\mathrm{d} \overrightarrow{\mathrm{y}}}{\mathrm{dt}}=$ slope of tangent line
$\overrightarrow{\mathrm{a}}(\mathrm{t})=\frac{\mathrm{d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}=\frac{d^{2} \vec{y}}{d t^{2}}=$ second derivative $\overrightarrow{\mathrm{a}}(\mathrm{t})<0 \Rightarrow \mathrm{y}(\mathrm{t})$ curves downward $\overrightarrow{\mathrm{a}}(\mathrm{t})>0 \Rightarrow \mathrm{y}(\mathrm{t})$ curves upward

Suppose we know a(t), can we find $v(t)$ and $y(t)$?

- Suppose $a(t)=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ (constant in time)
- From the definition of $a(t)$
$a(t) \equiv \frac{d v}{d t} \Rightarrow v(t)=\int^{t} a\left(t^{\prime}\right) d t^{\prime}=\int^{t}-9.8 d t^{\prime}=-9.8 t+$ constant (Meaning of the constant?) $\quad v(t)=-9.8 t+v_{o}$

$$
\begin{aligned}
& v(t)=\frac{d y}{d t} \Rightarrow y(t)=\int^{t} v\left(t^{\prime}\right) d t^{\prime}=-\frac{9.8}{2} t^{2}+v_{o} t+\mathrm{constant} \\
& \Rightarrow \mathrm{y}(\mathrm{t})=-\frac{9.8}{2} t^{2}+v_{o} t+y_{o}
\end{aligned}
$$

(1) Apply this equation to the falling tennis ball.

What is the value for $\mathrm{v}_{o} ? \mathrm{y}_{o}$?

Applications of constant acceleration equations

A boy threw a ball upward with an inital velocity of $3 \mathrm{~m} / \mathrm{s}$ and initial height of 1.5 m . Find $\mathrm{y}(\mathrm{t})$.
Given: The acceleration of the ball is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward.

Applications of constant acceleration equations

- Example - A motorist travelling at a constant velocity of $15 \mathrm{~m} / \mathrm{s}$ passed by the officer at $\mathrm{t}=0$. The officer immediately accelerates at $3 \mathrm{~m} / \mathrm{s}^{2}$. When will the officer catch up to the motorist?

(b)

The police officer and motorist meet at the time t where their

Non-constant acceleration

Example of non - constant acceleration - mass on a spring $y(t)=-0.05 \cos (6 t)$
Calculate velocity and acceleration.

Extract $\mathrm{v}(\mathrm{t})$ and $\mathrm{a}(\mathrm{t})$ information from $\mathrm{y}(\mathrm{t})$ graph

$$
y(t)=-0.05 \cos (6 t)
$$

Summary

- If you know $x(t)$, you have complete information on the motion
- If you know $v(t)$ only, you need to know one position (typically the initial position, x_{0}) in order to find $\mathrm{x}(\mathrm{t})$.
- If you know a(t) only, you need to know one velocity and one position (typically initial velocity, v_{0}, and initial position, x_{0}) in order to find $x(t)$.

