Ph170- General Physics I

Ch. 2

Pui K. Lam

Vectors, Scalar Product, Cross Product

- What is a vector?
- What kind of measurements in physics require the use of vectors?

Activity for Vector Representation

(Work with your group - 5 minutes Class discussion – 5 minutes)

- Example: A man walks 5.0 m eastward and then 6.0 m at 30° north from east.
- (a) How would you draw the individual displacement vector and the net displacement vector in a graph?
 (graphical representation of vector)
- (b) How far is he away from his starting point (magnitude of a vector)?
- (c) What is his bearing? (How many degree north from east?)
- (d) How did you "add" the two displacement vectors to get the net displacement vector?

Activity: Vector Addition

Geometric Method

Question

$$\vec{R} = \vec{A} + \vec{B} + \vec{C}$$

- (a) Find the magnitude of \vec{R} .
- (b) Find the angle θ .

Discuss with your group to come up with an approach to find the answer. What tools would you need?

Vector Addition-Component Method

Geometric Method

Question to students:

(a)
$$\vec{A} = 72.4\cos(32.0^{\circ})\hat{i} + 72.4\sin(32.0^{\circ})\hat{j}$$

OR

(b)
$$\vec{A} = 72.4\sin(32.0^{\circ})\hat{i} + 72.4\cos(32.0^{\circ})\hat{j}$$

(a)
$$\vec{B} = 57.3\cos(36.0^{\circ})\hat{i} + 57.3\sin(36.0^{\circ})\hat{j}$$

OR

(b)
$$\vec{B} = 57.3\sin(36.0^{\circ})\hat{i} + 57.3\cos(36.0^{\circ})\hat{j}$$

(a)
$$\vec{C} = 17.8 \hat{j}$$

OR

(b)
$$\vec{C} = -17.8 \hat{j}$$

 \hat{i} is the unit vector representing positive x-direction

j is the unit vector representing positive y-direction

Vector Addition - answer

Geometric Method

Component Method

(a) Express \vec{A} , \vec{B} , and \vec{C} in component form

(b) Add \vec{A} , \vec{B} ,and \vec{C} to get \vec{R}

$$\vec{A} = (72.4 \sin 32^{\circ})\hat{i} + (72.4 \cos 32^{\circ})\hat{j}$$

$$= 38.4\hat{i} + 61.4\hat{j}$$

$$\vec{B} = (-57.3 \cos 36^{\circ})\hat{i} + (-57.3 \sin 36^{\circ})\hat{j}$$

$$= -46.4\hat{i} - 33.7\hat{j}$$

$$\vec{C} = -17.8\hat{j}$$

$$\vec{R} = \vec{A} + \vec{B} + \vec{C} = (38.4 - 46.4)\hat{i} + (61.4 - 33.7 - 17.8)\hat{j}$$

$$= -8.0\hat{i} + 9.9\hat{j}$$

$$|\vec{R}| = \sqrt{(-8.0)^2 + (9.9)^2} \approx 13$$

$$\tan \theta = \frac{R_y}{R_x} = \frac{9.9}{-8.0} \Rightarrow \theta = -51^{\circ},129^{\circ}$$

Pick the correct answer for θ *.*

 How can you tell if two vectors are perpendicular to each other if the vectors are expressed in component form?

(see next slide)

Scalar product of two vectors

Definition: $\vec{A} \bullet \vec{B} \equiv |A| |B| \cos \phi = \text{ a scalar (i.e. a number not a vector)}$

- Also called "dot product."
- These Figures show the geometric interpretation of scalar product of two vectors.
- Scalar
 product will
 be used when
 we study work
 and energy.

(b)

(a)

Activity: Scalar Product

Geometric Method

Compute the scalar product

 $\vec{A} \bullet \vec{B}$

How to calculate the scalar product of two vectors when then angle between them is not given but the the vectors are given in component form?

Given:
$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$
 and $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$
Compute $\vec{A} \cdot \vec{B} = \left(A_x \hat{i} + A_y \hat{j} + A_z \hat{k}\right) \cdot \left(B_x \hat{i} + B_y \hat{j} + B_z \hat{k}\right)$
 $= A_x B_x \hat{i} \cdot \hat{i} + A_y B_y \hat{j} \cdot \hat{j} + A_z B_z \hat{k} \cdot \hat{k}$
 $+ A_x B_y \hat{i} \cdot \hat{j} + other$ cross terms ...
Note: $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$
 $\hat{i} \cdot \hat{j} = 0$
 $\Rightarrow \vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$
In particular: $\vec{A} \cdot \vec{A} = A_x A_x + A_y A_y + A_z A_z = \left| \vec{A} \right|^2$
Question1: Find the scalar product of $\vec{A} = 1\hat{i} + 2\hat{j}$ and $\vec{B} = 3\hat{i} + 4\hat{j} + 5\hat{k}$
Question2: Find the angle between \vec{A} and \vec{B}

Find angle between two vectors when the vectors are given in component form (answer)

Question1: Find the scalar product of $\vec{A} = 1\hat{i} + 2\hat{j}$ and $\vec{B} = 3\hat{i} + 4\hat{j} + 5\hat{k}$

Question 2: Find the angle between \vec{A} and \vec{B}

Solution:

$$\vec{A} \cdot \vec{B} = 1 \cdot 3 + 2 \cdot 4 + 0 \cdot 5 = 11$$

$$11 = \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta = \sqrt{1^2 + 2^2} \sqrt{3^2 + 4^2 + 5^2} \cos \theta = 15.8 \cos \theta$$

$$\Rightarrow \cos \theta = \frac{11}{15.8} = 0.696 \Rightarrow \theta \approx 45.9^{\circ}$$

Practical applications?

Vector product of two vectors $Let \vec{C} = \vec{A} \times \vec{B}$

Definition: $|\vec{C}| = |\vec{A}| |\vec{B}| \sin \phi \&$

Direction of \vec{C} is given by the "right-hand rule"

- Also called "cross product."
- These Figures illustrate the vector cross product.
- Vector cross product will be used when we study torque and rotational motion.

(a) $\vec{A} \times \vec{B}$ is perpendicular to the plane containing the vectors $\vec{A} \times \vec{B}$ \vec{A} and \vec{B} . Its direction is determined by the right-hand rule. Place the vectors tail to tail. They define a plane.

Calculation of Vector product - when the vectors are given in component form

Given:
$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$
 and $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$
Compute $\vec{A} \times \vec{B} = \left(A_x \hat{i} + A_y \hat{j} + A_z \hat{k}\right) \bullet \left(B_x \hat{i} + B_y \hat{j} + B_z \hat{k}\right)$
 $= A_x B_x (\hat{i} \times \hat{i}) + A_y B_y (\hat{j} \times \hat{j}) + A_z B_z (\hat{k} \times \hat{k})$
 $+ A_x B_y (\hat{i} \times \hat{j}) + A_y B_x (\hat{j} \times \hat{i}) \text{ other cross terms } ..$
Note: $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$
 $\hat{i} \times \hat{j} = \hat{k}; \quad (\hat{j} \times \hat{i}) = -\hat{k}; \text{ etc.}$
 $\Rightarrow \vec{A} \times \vec{B} = \hat{i} (A_y B_z - A_z B_y) + \hat{j} (A_z B_x - A_x B_z) + \hat{k} (A_x B_y - A_y B_x)$
In particular: $\vec{A} \times \vec{A} = 0$ and $\vec{B} \times \vec{A} = -\vec{A} \times \vec{B}$
Question1: Find the vector product of $\vec{A} = 1\hat{i} + 2\hat{j}$ and $\vec{B} = 3\hat{i} + 4\hat{j} + 5\hat{k}$
Question2: What is the area of the parallelogram formed by \vec{A} and \vec{B} ?

Calculation of Vector product - when the vectors are given in component form

Question1: Find the vector product of $\vec{A} = 1\hat{i} + 2\hat{j}$ and $\vec{B} = 3\hat{i} + 4\hat{j} + 5\hat{k}$

Question 2: What is the area of the parallelogram formed by \vec{A} and \vec{B} ?

Solution:

$$\vec{A} \times \vec{B} = 1 * 4(\hat{i} \times \hat{j}) + 1 * 5(\hat{i} \times \hat{k}) + 2 * 3(\hat{j} \times \hat{i}) + 2 * 5(\hat{j} \times \hat{k})$$

$$= 1 * 4(\hat{k}) + 1 * 5(-j) + 2 * 3(-\hat{k}) + 2 * 5(\hat{i})$$

$$= 10\hat{i} - 5\hat{j} - 2\hat{k}$$

Area =
$$|\vec{A} \times \vec{B}| = \sqrt{10^2 + (-5)^2 + (-2)^2} = \sqrt{129} \approx 11.4$$

Both dot-product and cross-product will be used in this class.