Ph170- General Physics I

Ch. 2
Pui K. Lam
Vectors, Scalar Product, Cross Product

- What is a vector?
- What kind of measurements in physics require the use of vectors?

Activity for Vector Representation

(Work with your group - 5 minutes
Class discussion - 5 minutes)

- Example: A man walks 5.0 m eastward and then 6.0 m at 30° north from east.
(a) How would you draw the individual displacement vector and the net displacement vector in a graph? (graphical representation of vector)
(b) How far is he away from his starting point (magnitude of a vector)?
(c) What is his bearing? (How many degree north from east?)
(d) How did you "add" the two displacement vectors to get the net displacement vector?

Activity: Vector Addition

Geometric Method

Question
$\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{C}}$
(a) Find the magnitude of $\overrightarrow{\mathrm{R}}$.
(b) Find the angle θ.

Discuss with your group to come up with an approach to find the answer. What tools would you need?

Vector Addition-Component Method

Geometric Method

Question to students:
(a) $\vec{A}=72.4 \cos \left(32.0^{\circ}\right) \hat{i}+72.4 \sin \left(32.0^{\circ}\right) \hat{j}$ OR
(b) $\vec{A}=72.4 \sin \left(32.0^{\circ}\right) \hat{i}+72.4 \cos \left(32.0^{\circ}\right) \hat{j}$
(a) $\vec{B}=57.3 \cos \left(36.0^{\circ}\right) \hat{i}+57.3 \sin \left(36.0^{\circ}\right) \hat{j}$

OR
(b) $\vec{B}=57.3 \sin \left(36.0^{\circ}\right) \hat{i}+57.3 \cos \left(36.0^{\circ}\right) \hat{j}$
(a) $\vec{C}=17.8 \hat{j}$

OR
(b) $\vec{C}=-17.8 \hat{j}$
\hat{i} is the unit vector representing positive x -direction
\hat{j} is the unit vector representing positive y-direction

Vector Addition - answer

Geometric Method

Component Method
(a) Express \vec{A}, \vec{B}, and \vec{C} in component form
(b) Add \vec{A}, \vec{B}, and \vec{C} to get \vec{R}
$\vec{A}=\left(72.4 \sin 32^{\circ}\right) \hat{i}+\left(72.4 \cos 32^{\circ}\right) \hat{j}$
$=38.4 \hat{i}+61.4 \hat{j}$
$\vec{B}=\left(-57.3 \cos 36^{\circ}\right) \hat{i}+\left(-57.3 \sin 36^{\circ}\right) \hat{j}$
$=-46.4 \hat{i}-33.7 \hat{j}$
$\vec{C}=-17.8 \hat{j}$
$\vec{R}=\vec{A}+\vec{B}+\vec{C}=(38.4-46.4) \hat{i}+(61.4-33.7-17.8) \hat{j}$
$=-8.0 \hat{i}+9.9 \hat{j}$
$|\vec{R}|=\sqrt{(-8.0)^{2}+(9.9)^{2}} \approx 13$
$\tan \theta=\frac{R_{y}}{R_{x}}=\frac{9.9}{-8.0} \Rightarrow \theta=-51^{\circ}, 129^{\circ}$
Pick the correct answer for θ.

- How can you tell if two vectors are perpendicular to each other if the vectors are expressed in component form?
(see next slide)

Scalar product of two vectors

Definition $: \vec{A} \bullet \vec{B} \equiv|A \| B| \cos \phi=$ a scalar (i.e. a number not a vector)
(a)

- Also called "dot product."
- These Figures show the geometric interpretation of scalar product of two vectors.
- Scalar product will be used when we study work and energy.

(b) $\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}$ equals $A(B \cos \phi)$. (Magnitude of $\overrightarrow{\boldsymbol{A}}$) times (Component of $\overrightarrow{\boldsymbol{B}}$ in direction of $\overrightarrow{\boldsymbol{A}}$)

(a)

(b)

(c)

Activity: Scalar Product

Compute the scalar product
$\vec{A} \bullet \vec{B}$

How to calculate the scalar product of two vectors when then angle between them is not given but the the vectors are given in component form?

$$
\begin{aligned}
& \text { Given }: \vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k} \text { and } \vec{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k} \\
& \text { Compute } \vec{A} \bullet \vec{B}=\left(A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}\right) \bullet\left(B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}\right) \\
& =A_{x} B_{x} \hat{i} \bullet \hat{i}+A_{y} B_{y} \hat{j} \bullet \hat{j}+A_{z} B_{z} \hat{k} \bullet \hat{k} \\
& +A_{x} B_{y} \hat{i} \bullet \hat{j}+\text { other cross terms .. } \\
& \text { Note }: \hat{i} \bullet \hat{i}=\hat{j} \bullet \hat{j}=\hat{k} \bullet \hat{k}=1 \\
& \hat{i} \bullet \hat{j}=0 \\
& \Rightarrow \vec{A} \bullet \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{aligned}
$$

In particular: $\vec{A} \bullet \vec{A}=A_{x} A_{x}+A_{y} A_{y}+A_{z} A_{z}=|\vec{A}|^{2}$
Question 1: Find the scalar product of $\vec{A}=1 \hat{i}+2 \hat{j}$ and $\vec{B}=3 \hat{i}+4 \hat{j}+5 \hat{k}$
Question 2 : Find the angle between \vec{A} and \vec{B}

Find angle between two vectors when the vectors are given in component form (answer)

Question 1: Find the scalar product of $\vec{A}=1 \hat{i}+2 \hat{j}$ and $\vec{B}=3 \hat{i}+4 \hat{j}+5 \hat{k}$
Question 2: Find the angle between \vec{A} and \vec{B}

Solution:
$\vec{A} \bullet \vec{B}=1 * 3+2 * 4+0 * 5=11$
$11=\vec{A} \bullet \vec{B}=|\vec{A} \| \vec{B}| \cos \theta=\sqrt{1^{2}+2^{2}} \sqrt{3^{2}+4^{2}+5^{2}} \cos \theta=15.8 \cos \theta$
$\Rightarrow \cos \theta=\frac{11}{15.8}=0.696 \Rightarrow \theta \approx 45.9^{\circ}$

Practical applications?

Vector product of two vectors
 Let $\vec{C}=\vec{A} \times \vec{B}$
 Definition : $|\vec{C}| \equiv|\vec{A}||\vec{B}| \sin \phi \&$
 Direction of \vec{C} is given by the "right-hand (a)

- Also called "cross product."
- These Figures illustrate the vector cross product.
- Vector cross product will be used when we study torque and rotational motion.
(a)

(b)

(b)

Calculation of Vector product - when the vectors are given in component form

Given: $\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$ and $\vec{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}$
Compute $\vec{A} \times \vec{B}=\left(A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}\right) \bullet\left(B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}\right)$
$=A_{x} B_{x}(\hat{i} \times \hat{i})+A_{y} B_{y}(\hat{j} \times \hat{j})+A_{z} B_{z}(\hat{k} \times \hat{k})$
$+A_{x} B_{y}(\hat{i} \times \hat{j})+A_{y} B_{x}(\hat{j} \times \hat{i})$ other cross terms ..
Note : $\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0$
$\hat{i} \times \hat{j}=\hat{k} ; \quad(\hat{j} \times \hat{i})=-\hat{k} ; \quad$ etc.
$\Rightarrow \vec{A} \times \vec{B}=\hat{i}\left(A_{y} B_{z}-A_{z} B_{y}\right)+\hat{j}\left(A_{z} B_{x}-A_{x} B_{z}\right)+\hat{k}\left(A_{x} B_{y}-A_{y} B_{x}\right)$
In particular: $\vec{A} \times \vec{A}=0$ and $\vec{B} \times \vec{A}=-\vec{A} \times \vec{B}$
Question 1: Find the vector product of $\vec{A}=1 \hat{i}+2 \hat{j}$ and $\vec{B}=3 \hat{i}+4 \hat{j}+5 \hat{k}$
Question 2 : What is the area of the parallelogram formed by \vec{A} and \vec{B} ?

Calculation of Vector product - when the vectors are given in component form

Question 1: Find the vector product of $\vec{A}=1 \hat{i}+2 \hat{j}$ and $\vec{B}=3 \hat{i}+4 \hat{j}+5 \hat{k}$
Question 2 : What is the area of the parallelogram formed by \vec{A} and \vec{B} ?

Solution:

$$
\begin{aligned}
& \vec{A} \times \vec{B}=1 * 4(\hat{i} \times \hat{j})+1 * 5(\hat{i} \times \hat{k})+2 * 3(\hat{j} \times \hat{i})+2 * 5(\hat{j} \times \hat{k}) \\
& =1 * 4(\hat{k})+1 * 5(-j)+2 * 3(-\hat{k})+2 * 5(\hat{i}) \\
& =10 \hat{i}-5 \hat{j}-2 \hat{k}
\end{aligned}
$$

$$
\text { Area }=|\vec{A} \times \vec{B}|=\sqrt{10^{2}+(-5)^{2}+(-2)^{2}}=\sqrt{129} \approx 11.4
$$

Both dot-product and cross-product will be used in this class.

