Chapter 15

Oscillation/Periodic Motion

Learning Goals for Chapter 15

- To examine when natural oscillation occurs
- To quantify and learn the details of a special type of oscillation called simple harmonic motion
- To understand the concept of driven oscillations and resonance

An example of natural oscillation

- A mass-spring system exhibits natural oscillation when the mass is displaced from its equilibrium position and then let go or give it push.
- Natural frequency

$$\omega = \sqrt{\frac{k}{m}} \text{ rad/s}$$

• The restoring force is provided by the stretched (or compressed) spring.

(b)

x = 0: The relaxed spring exerts no force on the glider, so the glider has zero acceleration.

(c)

Introduction - when does natural oscillation occur?

- Example: A pendulum hanging straight down is in a stable equilibrium position.
- If you pull the pendulum to the side and then let go or give it a push, the pendulum will oscillate at its natural frequency,

$$\omega = \sqrt{\frac{g}{\ell}}$$
 rad/s (will derive later) if there is no damping forces.

Friction, air-resistance, and other damping forces will cause the pendulum to oscillate at a slightly different frequency and to stop eventually.

• Natural oscillation occurs whenever an object with mass (inertia) is displaced away from its *stable equilibrium* position. Note: the system provides a restoring force when the object is displaced from a stable equilibrium but not from an unstable equilibrium position.

Different between oscillation and periodic motion

- The text equates periodic motion with oscillation.
- Technically, a damped oscillation is not a periodic function. The motion is periodic only when there is no damping force. In real situations, all natural oscillations are damped by friction, air-resistance, etc.

Damped oscillation

• The period *T* increases

 $(T_0 = \text{period with zero damping}).$

A special type of oscillation - Simple harmonic motion

 An ideal spring responds to stretch and compression linearly, obeying Hooke's Law.

Ideal case: The restoring force obeys Hooke's law $(F_x = -kx)$, so the graph of F_x versus x is a straight line.

Simple Harmonic motion occurs when there is no damping force and the restoring force is given by:

F = -kx (Hook's Law)

For real springs, Hook's Law is a good approximation only when the displacement (x) is "small".

Mathematics of simple harmonic motion (SHM)

Newton's 2nd Law :
$$F = ma \Rightarrow -kx = m\frac{d^2x}{dt^2}$$

(assumed no damping force and restoring force obeys Hook's Law)

This equation is called a "differential equation" (D.E.).

That is an equation which relates the function, x(t), to

its derivatives (in this case, $\frac{dx^2}{dt^2}$).

A differential equation is like a puzzle.

Try to think of a function, x(t), which can satisfy the relationship stated by the differential equation.

In this case, what function whose 2nd derivative

is proportional to the function with a negative sign?

Solution to the simple harmonic motion (SHM)

$$F = ma$$
$$-kx = m\frac{d^2x}{dt^2}$$

Solution: $x(t) = A \cos \omega t + B \sin \omega t$

Substitute:

$$-k(A \cos \omega t + B \sin \omega t) = -m\omega^{2}(A \cos \omega t + B \sin \omega t)$$

 \Rightarrow A & B can be any number

but

$$\omega$$
 must be $\sqrt{\frac{k}{m}}$

 ω is called the natural (angular) frequency of mass-spring system.

What are the physical meanings of A & B?

Sample problems for SHM

(b)

Given: Spring constant k=800 N/m, m=0.5kg, initial displacment =+0.02m, initial velocity =0

- a)Find: frequency of oscillation in rad/s, period of oscillation in second.
- b) Find x(t) and sketch it.
- c) Suppose the initial displacment = 0.02m, initial velocity = +3m/s, find x(t) and sketch it.
- d) Suppose the initial displacment = 0, initial velocity = +3m/s, find x(t) and sketch it.

Solution to the simple harmonic motion (SHM) -cont

What does $x(t)=A \cos \omega t + B \sin \omega t$ represent?

What are the physical meanings of A & B?

Look at the situation at t=0

 $x(t=0)=A \implies A$ is the initial displacement.

$$v(t) = \frac{dx}{dt} = -A\omega \sin \omega t + B\omega \cos \omega t$$

$$v(t=0) = B\omega \Rightarrow B = \frac{v_o}{\omega}$$

Note: As long as Hook's law is valid (i.e. the system exhibits simple harmonic motion), the mass spring system will oscillate at the natural frequency no matter how large or small A or B.

Solution to the simple harmonic motion (SHM) -cont

Most general solution to $m \frac{d^2x}{dt^2} = -kx$ is:

 $x(t) = A \cos \omega t + B \sin \omega t$

$$=x_{o}\cos\omega t + \frac{v_{o}}{\omega}\sin\omega t$$

 $= \sqrt{x_o^2 + \frac{{v_o}^2}{\omega^2}} \cos(\omega t - \phi)$ (another way of writing the solution)

$$\tan \phi = \frac{v_o}{\omega x_o}$$

[Note: $\cos(\omega t - \phi) = \cos \omega t \cos \phi + \sin \omega t \sin \phi$]

Simple Pendulum

(b) An idealized simple pendulum

$$\tau = I\alpha$$

$$-L(mg\sin\theta) = (mL^2)\frac{d^2\theta}{dt^2}$$

$$-\frac{g}{L}\sin\theta = \frac{d^2\theta}{dt^2}$$

For "small"
$$\theta$$
, $\sin \theta \approx \theta \Rightarrow -\frac{g}{L}\theta = \frac{d^2\theta}{dt^2}$

compare with SHM:
$$-\frac{k}{m}x = \frac{d^2x}{dt^2}$$

 \Rightarrow pendulum exhibits a SHM when θ is small

(e.g. less than 1 radian)

⇒ natural angular frequency for a simple pendulum is

$$\omega = \sqrt{\frac{g}{L}}$$
 (Note: does not depend on m)
 $\Rightarrow \theta(t) = A\cos\omega t + B\sin\omega t$

Q. Find $\theta(t)$ for a pendulum with mass=3kg, L= 2.5m, released from rest with an initial displacement is 0.5 rad.

Conservation of energy in SHM – graphical view

- Figure 13.15 shows the interconversion of kinetic and potential energy with an energy versus position graphic.
 - (a) The potential energy U and total mechanical energy E for a body in SHM as a function of displacement x

The total mechanical energy E is constant.

(b) The same graph as in **(a)**, showing kinetic energy *K* as well

At $x = \pm A$ the energy is all potential; the kinetic energy is zero.

At x = 0 the energy is all kinetic; the potential energy is zero.

At these points the energy is half kinetic and half potential.

Conservation of energy in SHM

Given:
$$x(t) = x_o \cos \omega t + \frac{v_o}{\omega} \sin \omega t$$
 for SHM

Calculate the kinetic energy ($K = \frac{1}{2}mv^2$) and potential energy ($U = \frac{1}{2}kx^2$)

and show that K+U does not change with time.

Try it yourselves first before looking at the answer below.

$$v(t) = \frac{dx}{dt} = -x_o \omega \sin \omega t + v_o \cos \omega t$$

$$K(t) = \frac{1}{2}m[v(t)]^2 = \frac{1}{2}m[(x_o\omega)^2\sin^2\omega t - 2x_o\omega v_o\sin\omega t\cos\omega t + (v_o)^2\cos^2\omega t]$$

$$U(t) = \frac{1}{2}k[x(t)]^2 = \frac{1}{2}k\left[(x_o)^2\cos^2\omega t + 2x_o\frac{v_o}{\omega}\sin\omega t\cos\omega t + (\frac{v_o}{\omega})^2\sin^2\omega t\right]$$

Note:
$$k = m\omega^2$$

$$\Rightarrow K(t) + U(t) = \frac{1}{2}mv_o^2 + \frac{1}{2}kx_o^2 = K_o + U_o = \text{constant}$$

Energy Expression for SHM

(b)

Given: Spring constant k=800 N/m, m=0.5kg,

initial displacment =+0.03m, initial velocity =2 m/s

Find: The maximum displacement.

Find: The maximum velocity of the mass.

Find: The kinetic energy, potential energy and total energy at t=2 s.

Damped oscillations

Consider shock
 absorbers on your
 automobile. Without
 damping, hitting a
 pothole would set your
 car into SHM on the
 springs that support it.

 $m\ddot{x} = -kx - b\dot{x}; \quad b = damping coefficient$

 $(T_0 = \text{period with zero damping}).$

Forced (driven) oscillations and resonance

- A force applied "in synch" with a motion already in progress will resonate and add energy to the oscillation (refer to Figure 13.28).
- Resonance occurs when driven frequency=natural frequency

Each curve shows the amplitude A for an oscillator subjected to a driving force at various angular frequencies ω_d . Successive curves from blue to gold represent successively greater damping.

Driving frequency ω_d equals natural angular frequency ω of an undamped oscillator.

The system has the largest amplitude of oscillation at resonance, see Figure to the left. Damping decreases the amplitude.

Mathematics of driven oscillator

$$m\frac{d^2x}{dt^2} + kx = 0$$
 (natural oscillation, natural freq. = $\omega_0 = \sqrt{\frac{k}{m}}$)

$$m\frac{d^2x}{dt^2} + kx = F_o \cos \omega t$$
 (driven ocillation, driven freq. = ω)

(assumed no damping force)

Solution: Let $x(t) = x_0 \cos \omega t$ (system is forced to oscillate at driven freq.)

Substittue:

$$m(-\omega^2)x_o\cos\omega t + kx_o\cos\omega t = F_o\cos\omega t$$

$$\Rightarrow X_o = \frac{F_o}{k - m\omega^2} = \frac{F_o/m}{k/m - \omega^2} = \frac{F_o/m}{\omega_o^2 - \omega^2}$$

 \Rightarrow ∞ amplitude when $\omega = \omega_0$

with damping force, amplitude is largest when $\omega = \omega_o$, but not infinite.

Forced (driven) oscillations and resonance II

•The Tacoma Narrows Bridge suffered spectacular structural failure after absorbing too much resonant energy (refer to Figure 13.29).

