
Chapter 15 

Oscillation/Periodic 
Motion 

Modified by P. Lam 8_2_2018 



Learning Goals for Chapter 15 

•  To examine when natural oscillation occurs  

•  To quantify and learn the details of a special type of 
oscillation called simple harmonic motion 

•  To understand the concept of driven oscillations and 
resonance 



An example of natural oscillation 
•  A mass-spring system 

exhibits natural 
oscillation when the 
mass is displaced from 
its equilibrium position 
and then let go or give it 
push. 

•  Natural frequency  

•  The restoring force is 
provided by the 
stretched (or 
compressed) spring. 
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ω =
k

m
  rad/s



Introduction - when does natural oscillation occur? 
•  Example: A pendulum hanging 

straight down is in a stable equilibrium 
position.  

•  If you pull the pendulum to the side 
and then let go or give it a push, the 
pendulum will oscillate at its natural 
frequency, 

 

ω = g
ℓ

 rad/s  (will derive later) if there is no damping forces.

Friction, air-resistance, and other damping forces will cause the pendulum
to oscillate at a slightly different frequency and to stop eventually.

•   Natural oscillation occurs whenever an object with mass 
(inertia) is displaced away from its stable equilibrium 
position. Note: the system provides a restoring force when 
the object is displaced from a stable equilibrium but not 
from an unstable equilibrium position. 



Different between oscillation and periodic motion 
•  The text equates periodic motion with oscillation. 

•  Technically, a damped oscillation is not a periodic function.  
The motion is periodic only when there is no damping force.  In 
real situations, all natural oscillations are damped by friction, 
air-resistance, etc. 

Damped oscillation 

Undamped oscillation 



A special type of oscillation - Simple harmonic motion 

•  An ideal spring responds 
to stretch and compression 
linearly, obeying Hooke’s 
Law. 

Simple Harmonic motion occurs
when there is no damping force and 
the restoring force is given by :
F = - kx  (Hook's Law)

For real springs, Hook's Law is a good
approximation only when the displacement
 (x) is "small".



Mathematics of simple harmonic motion (SHM) 

Newton's 2nd Law :F = ma⇒−kx = m d 2x
dt 2

(assumed no damping force and restoring force obeys Hook's Law)

€ 

This equation is called a "differential equation" (D.E.).

That is an equation which relates the function, x(t), to 

its derivatives (in this case, 
dx2

dt2
).

A differential equation is like a puzzle.

Try to think of a function, x(t), which can 

satisfy the relationship stated by the differential equation.

In this case, what function whose 2nd derivative

is proportional to the function with a negative sign?



Solution to the simple harmonic motion (SHM) 

€ 

F = ma

−kx = m
d

2
x

dt
2

  

Solution: x(t) = A cosω t + B sin ω t
Substitute:
−k(A cosωt +  B sin  ωt) = − mω 2 (A cosωt + B sin  ωt)
⇒ A & B can be any number 
but 

ω  must be k
m

ω  is called the natural (angular) frequency of mass-spring system.

What are the physical meanings of A & B?



Sample problems for SHM 

Given: Spring constant k=800 N/m, m=0.5kg,
initial displacment =+0.02m, initial velocity =0
a)Find: frequency of oscillation in rad/s, period of oscillation in second.
b) Find x(t) and sketch it.
c) Suppose the initial displacment = 0.02m, initial velocity = +3m/s,
find x(t) and sketch it.
d) Suppose the initial displacment = 0, initial velocity = +3m/s,
find x(t) and sketch it.



Solution to the simple harmonic motion (SHM) -cont 

Look at the situation at  t=0
x(t=0)=A   ⇒ A is the initial displacement.

v(t)= dx
dt

= −Aω sinωt + Bω cosωt

v(t = 0) = Bω ⇒ B = vo
ω

Note :  As long as Hook's law is valid (i.e. the system
exhibits simple harmonic motion), 
the mass spring system will oscillate at the natural
freqency no matter how large or small A or B.

What does x(t)=A cosω t + B sinω t represent?

What are the physical meanings of A & B?



Solution to the simple harmonic motion (SHM) -cont 

Most general solution to  m d 2x
dt 2 = −kx is:

x(t) =A cosω t+ B sinω t

=xocosω t+ vo

ω
sinω t

= xo
2 + vo

2

ω 2 cos(ωt −φ)   (another way of writing the solution)

tanφ = vo

ωxo

[Note : cos(ωt −φ) = cosωt cosφ + sinωt sinφ]



Simple Pendulum 
τ = Iα

−L(mgsinθ ) = (mL2 ) d
2θ
dt 2

− g
L

sinθ = d
2θ
dt 2

For "small" θ , sinθ ≈θ ⇒ − g
L
θ = d

2θ
dt 2

compare with SHM: − k
m
x = d

2x
dt 2

⇒ pendulum exhibits a SHM when θ  is small
(e.g. less than 1 radian)
⇒ natural angular frequency for a simple pendulum is

ω= g
L

(Note :  does not depend on m)

⇒θ(t) = Acosωt + Bsinωt

Q. Find θ(t) for a pendulum with mass=3kg, L= 2.5m,  
released from rest with an initial displacement is  0.5 rad.  



Conservation of energy in SHM – graphical view  
•  Figure 13.15 shows the interconversion of kinetic and potential 

energy with an energy versus position graphic. 



Conservation of energy in SHM  

Given : x(t) = x
o
cosωt +

v
o

ω
sinωt   for SHM

Calculate the kinetic energy (K=
1

2
mv

2 ) and potential energy (U=
1

2
kx

2 )

and show that K+U does not change with time.

Try it yourselves first before looking at the answer below.

v(t) =
dx

dt
= −x

o
ω sinωt + v

o
cosωt

K(t) =
1

2
m[v(t)]2

=
1

2
m (x

o
ω)2 sin2ωt − 2x

o
ωv

o
sinωt cosωt + (v

o
)2 cos2ωt 

U(t) =
1

2
k[x(t)]2

=
1

2
k (x

o
)2 cos2ωt + 2x

o

v
o

ω
sinωt cosωt + (

v
o

ω
)2 sin2ωt








Note : k =mω 2

⇒ K(t)+U(t) =
1

2
mv

o

2
+

1

2
kx

o

2
= K

o
+U

o
=  constant



Energy Expression for SHM 

	

Given:	Spring	constant	k=800	N/m,	m=0.5kg,
initial	displacment	=+0.03m,	initial	velocity	=2	m/s
Find:	The	maximum	displacement.
Find:	The	maximum	velocity	of	the	mass.
Find:	The	kinetic	energy,	potential	energy	and	total	energy	at	t=2	s.



Damped oscillations 
•  Consider shock 

absorbers on your 
automobile.  Without 
damping, hitting a 
pothole would set your 
car into SHM on the 
springs that support it. 

mx = −kx − bx; b = damping coefficient



Forced (driven) oscillations and resonance 
•  A force applied “in synch” with a motion already in progress 

will resonate and add energy to the oscillation (refer to Figure 
13.28). 

•  Resonance occurs when driven frequency=natural frequency 

The system has 
the largest 
amplitude of 
oscillation at 
resonance, see 
Figure to the 
left. Damping 
decreases the 
amplitude. 



Mathematics of driven oscillator 

€ 

m
d

2
x

dt
2

+ kx = 0   (natural oscillation, natural freq. =ωo =
k

m
)

m
d

2
x

dt
2

+ kx = F
o
cosωt (driven ocillation, driven freq. =ω )

(assumed no damping force)

Solution :  Let x(t) = xo cosωt  (system is forced to oscillate at driven freq.)

Substittue :

m −ω 2( )xo cosωt + kxo cosωt = F
o
cosωt

⇒ xo =
F
o

k −mω 2
=

F
o

/m

k /m −ω 2
=

F
o

/m

ωo

2
−ω 2

⇒∞ amplitude when ω =ωo

with damping force, amplitude is largest when ω =ωo,

but not infinite.



Forced (driven) oscillations and resonance II 

• The Tacoma Narrows Bridge suffered spectacular structural 
   failure after absorbing too much resonant energy (refer to Figure 
   13.29). 


