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Learning Goals for Chapter 15

To examine when natural oscillation occurs

To quantify and learn the details of a special type of

oscillation call

led simple harmonic motion

To understand
resonance

| the concept of driven oscillations and




An example of natural oscillation

A mass-spring system o

x > 0: glider displaced F, <0,s0a, <0:
eXhibitS natural to ll'nj 1‘ighl I‘mn? ic stretched spring
equilibrium position. pulls glider toward
qmlll rium position.

oscillation when the - T Wi

mass 1s displaced from
. eqe . . Wy x
its equilibrium position ) é $

and then let go or give it
pUSh, g 0: The re ]‘1.\ul- spring exerts mi stg— on the

glider, so the glider has zero acceleration.
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 Natural frequency .

w = \/E rad/s ©
m

x < 0: glider displaced F, > 0,s0a, > 0:
to the left from the compressed spring

o The re Storing force is cqui]ihrium_.po\ilion. PU\DIL;; glidcr l()'\\‘;u'(l
. equih \1_;1um position.
provided by the oy y
StretChed (Or - SN . &

compressed) spring. Z




Introduction - when does natural oscillation occur?

- Example: A pendulum hanging
straight down is in a stable equilibrium
position.

« If you pull the pendulum to the side
and then let go or give it a push, the
pendulum will oscillate at its natural
frequency,

W= \/% rad/s (will derive later) if there is no damping forces.

Friction, air-resistance, and other damping forces will cause the pendulum

to oscillate at a slightly different frequency and to stop eventually.

e Natural oscillation occurs whenever an object with mass
(inertia) 1s displaced away from its stable equilibrium
position. Note: the system provides a restoring force when
the object is displaced from a stable equilibrium but not
from an unstable equilibrium position.




Different between oscillation and periodic motion

» The text equates periodic motion with oscillation.

* Technically, a damped oscillation is not a periodic function.
The motion 1s periodic only when there 1s no damping force. In
real situations, all natural oscillations are damped by friction,

air-resistance, etc.

— ph = 0.1 /l% (weak damping force)
x =—=b=04 @ (stronger damping force)
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With stronger damping (larger b):
—A}  * The amplitude (shown by the dashed U ndamped OSC' | Iatlon
curves) decreases more rapidly.
e The period T increases
(TO = perlod with zero damping).

Damped oscillation




A special type of oscillation - Simple harmonic motion

* An 1deal spring responds
to stretch and compression  Simple Harmonic motion occurs
linearly, obeying Hooke' s

when there is no damping force and
Law.

the restoring force is given by :
Ideal case: The restoring force obeys Hooke’s

law (F, = —kx), so the graph of F versus x is a F=-kx (Hook's Law)

straight line.
Restoring force F,
A T For real springs, Hook's Law is a good
N\ ) . . . .
R Typicalreal case: The g pproximation only when the displacement
restoring force deviates
from Hooke’s law ... (x)is "small".
o *. Displacement x
. e
..but F, = —kxcanbe a N

good approximation to the force ™
if the displacement x is sufficiently small.




Mathematics of simple harmonic motion (SHM)

d2
Newton's 2nd Law : FF' = ma = —kx = de;C
(assumed no damping force and restoring force obeys Hook's Law)
This equation 1s called a "differential equation" (D.E.).

That 1s an equation which relates the function, x(t), to

: L : : dx?
its derivatives (in this case, F).
t

A differential equation is like a puzzle.

Try to think of a function, x(t), which can

satisty the relationship stated by the differential equation.
In this case, what function whose 2nd derivative

1s proportional to the function with a negative sign?




Solution to the simple harmonic motion (SHM)
F =ma
d’x
dt’

—kx =m

Solution: x(t) = A coswt + B sin wt

Substitute:

—k(A coswt+ B sin wt)=— mw’(A coswt+ B sin wt)
= A & B can be any number

but

/k
@ must be ,|—
m

@ 1s called the natural (angular) frequency of mass-spring system.

What are the physical meanings of A & B?




Sample problems for SHM
(b)
m = 0.50 kg
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x=0 x=0.020m
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Given: Spring constant k=800 N/m, m=0.5kg,

initial displacment =+0.02m, initial velocity =0

a)Find: frequency of oscillation in rad/s, period of oscillation in second.
b) Find x(t) and sketch it.

¢) Suppose the 1nitial displacment = 0.02m, initial velocity = +3m/s,
find x(t) and sketch it.

d) Suppose the initial displacment = 0, initial velocity = +3m/s,

find x(t) and sketch it.




Solution to the simple harmonic motion (SHM) -cont

What does x(t)=A coswt + B sinwt represent?

What are the physical meanings of A & B?

Look at the situation at t=0
x(t=0)=A = A is the initial displacement.
dx .
V(t):a =—Aw st + Bw cos wt
%
v(it=0)=Bw = B=-"*%
0]

Note: As long as Hook's law is valid (i.e. the system
exhibits simple harmonic motion),
the mass spring system will oscillate at the natural

fregency no matter how large or small A or B.




Solution to the simple harmonic motion (SHM) -cont

: d’x :
Most general solution to mF = —kx 1s:
4

x(t) =A coswt+ B sinwt

LA
=X COS@Wt+—=sInmt
)

2
\ . :
— \/ X, + a;)z cos(wr —¢) (another way of writing the solution)

v
tang = —

X

o

[ Note : cos(wt — @) = cos @t cos P + sin @t Sin @ |




Simple Pendulum

(b) An idealized simple pendulum T=1x
)
. 2
String is —L(mgsin@)=(mL")—
assumed to be dt

massless and 2
- g . do

unstretchable. ——Sln9 — .

Bob is modeled L dt

as a p‘()int mass. g d29
L : For "small" 6, sin@ =60 = —=0=—
L
i : k d’x
= compare with SHM: — —x=—-
mg sin 0 m dt

The restoring force on the Y|
bob is proportional to sin 6, \\ p
not to §. However, for small \\
0, sin 6 = 0, so the motion is \ e
approximately simple harmonic.’;} -

s\ mgcoso = pendulum exhibits a SHM when 6 is small

(e.g. less than 1 radian)

=> natural angular frequency for a simple pendulum is

pyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

a)=\/% (Note : does not depend on m)

= 0(t) = Acoswt + Bsinwt

Q. Find 6(t) for a pendulum with mass=3kg, L= 2.5m,
released from rest with an initial displacement is 0.5 rad.




Conservation of energy in SHM — graphical view

* Figure 13.15 shows the interconversion of kinetic and potential
energy with an energy versus position graphic.

(a) The potential energy U and total mechanical ~ (b) The same graph as in (@), showing

energy E for a body in SHM as a function of kinetic energy K as well
displacement x At x = *A the energy is all potential; the kinetic

; . energy is zero.
The total mechanical energy E is constant. o

\ Energy

\ At x = 0 the energy is all kinetic;

the potential energy is zero.

\ i Energy| 75
i E=K+ U4

£

X

—A T 0 A

At these points the energy is half
kinetic and half potential.




Conservation of energy in SHM

. v, .
Given : x(t) = x, coswt + —~sinwt for SHM
W

Calculate the kinetic energy (Kz%mvz) and potential energy (U:%kxz)

and show that K+U does not change with time.

Try it yourselves first before looking at the answer below.

X :
V(t) = — =-x wsinwt + v, coswt

K(t)= %m[v(t)]2 = %m[(xoou)2 sin” wt - 2x wv, sinwt coswt +(v,)’ cos’ a)t]

U(t) = lk[x(t)]2 = lkl(xo )’ cos” wt +2x, Yo sin wt cos wt +(22)? sin® a)t}
2 2 W W

Note: k=mw*

= K@)+U(t) = %mvi +%kxj =K, +U, = constant




Energy Expression for SHM
(b)
m = 0.50 kg
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Given: Spring constant k=800 N/m, m=0.5kg,
initial displacment =+0.03m, initial velocity =2 m/s
Find: The maximum displacement.

Find: The maximum velocity of the mass.

Find: The Kinetic energy, potential energy and total energy at t=2 s.




Damped oscillations

* Consider shock
absorbers on your
automobile. Without

mx =—kx —bx; b=damping coefficient

damping, hitting a — b = 0.1/km (weak damping force)
pothole would set your « = b = 0.4/km (stronger damping force)
car into SHM on the A

springs that support it.

Upper cylinder attached
o ‘l"ll“C car:

With stronger damping (larger b):
—AT e The amplitude (shown by the dashed
curves) decreases more rapidly.
e The period T increases
(T\y = period with zero damping).




Forced (driven) oscillations and resonance

A force applied “in synch” with a motion already in progress
will resonate and add energy to the oscillation (refer to Figure
13.28).

* Resonance occurs when driven frequency=natural frequency

Each curve shows the amplitude A for an oscillator subjected to a driving force
at various angular frequencies wy. Successive curves from blue to gold represent
A successively greater damping.

The system has

the largest

A lightly damped oscillator exhibits a sharp :
resonance peak when wy 1s close to w (the am pl ItUde Of
natural angular frequency of an undamped . .
oscillator). OSCIIIatlon at
Stronger damping reduces and broadens the resonan Ce, See
peak and shifts it to lower frequencies. F

igure to the
left. Damping

decreases the

SFI’DHX/k

.............
...........

. .

. N

4F, max/ k -

3qux/k B

.....
....
i
»®
.
.
.
.
.

2F max/ k

Fmax/k : o If b = (2km, the peak disappears completely.

o o5 10 15 20 @l amplitude.

Driving frequency w,4 equals natural angular
frequency w of an undamped oscillator.




Mathematics of driven oscillator

2
m d f + kx =0 (natural oscillation, natural freq.=w_ = 1/5)
dt m
d’x : R .
m 1 + kx = F, coswt (driven ocillation, driven freq.=w )

(assumed no damping force)
Solution: Let x(t) =x, coswr (system is forced to oscillate at driven freq.)

Substittue :
m(—wz)xo coswt + kx_coswt = F, coswt

F F, /m F, /m

Y%

= X = = =
2
° k-mow® kim-0° o’ -0’

(o)

=> o amplitude when w = w,
with damping force, amplitude 1s largest when w = w_,

but not infinite.




Forced (driven) oscillations and resonance 11

*The Tacoma Narrows Bridge suffered spectacular structural
failure after absorbing too much resonant energy (refer to Figure

13.29).




