Making Adjustable Autonomy Easier with Teamwork

Paul Scerri and Nancy Reed

Adjustable Autonomy

- Domain
  - Training, testing, experimentation using intelligent agents
  - Air-combat simulation, RoboCup
- Adjustable autonomy required for
  - Changing behavior on line to create training scenarios
  - Ad hoc testing
  - Creating new / interesting scenarios online

Adjustable Autonomy Challenge

- Flexible changes to behavior
- Ad hoc changes to behavior
- Agent specification unknown in advance

Behavior must remain reasonable while user is manipulating agent

Conventional Systems

An ad hoc substitution of B’ for B may cause the system to break or act in another undesirable manner.

Because: Inflexible links between components

An Ideal Team

When Something Goes Wrong
Adjustable Autonomy Using Teams

**An Ideal Team**
- Flexible to changes in individual members
- Robust to a single point of failure
- Reconfigure automatically around change in a single member
- Flexible links between team members

**Idea**

Leverage team properties to implement flexible AA

**Implementing AA**
- Behavior of the actor implemented by a team of agents
- AA mechanism allows a user (or other actors) to change a single member of the team
- Rest of team adjusts around the changed team member
  - When change occurs normal team conventions are adhered to

**Result**
- Ad hoc changes possible
- Reasonable behavior under variety of changes
  - Behavior of actor does not fail completely when an ad hoc change is made

**EASE**
- Agent development system with AA
  - Uses “team for AA” idea
- Implemented and tested in “simple” scenarios
  - Air-combat simulation, RoboCup
- Serious testing about to begin

**EASE “Team Model”**
- Organization style
  - Hierarchical
- Contracts between agents
- Notification of success or failure
- Negotiation at bottom of hierarchies manages inter-agent conflicts
- Fairly simple
Adjustable Autonomy Using Teams

**EASE “Social Conventions”**
- Inform contractor when finishing work on a contract
- Indicate success or failure
- Priority system in force amongst agents, higher priority agents given more say in negotiations

**Implementation**
- User (or other agents) can terminate, pause or start new agents
- When user takes such an action normal team procedures/social conventions are followed
  - Contractor notified
  - Negotiations left/entered gracefully
  - Team adjusts to new configuration

**Example**

**Normal Running**

**With Adjustable Autonomy**
Adjustable Autonomy Using Teams

Side Effects of Team AA

- Reasonable view of behavior
- Good decomposition enforced
- Fairly easy to understand why actor is doing what it is
- Handles complexity reasonably well

However . . .

- Flexible teamwork need not imply good behavior
- Good specification should lead to good behavior when AA is used
  - Appropriately placed success and failure transitions
  - Well designed structure of agents
  - Careful decomposition
- If specification is not well done unexpected/undesirable things may happen when user makes ad hoc changes
  - Open problem

Future Directions

- Improve teamwork model
  - More flexible contracts
  - Higher level understanding of team goals
- Improved actor – human interface
  - Show user what is going on and why
  - Show user the effect of different actions

Conclusions

- Team behavior leveraged to implement AA
- Flexibility of interactions between team members the key to approach
- Allows wide variety of ad hoc behavior changes at runtime