A User-Controlled Approach to Adjustable Autonomy

Nancy E. Reed
Information and Computer Sciences Department
University of Hawaii, Manoa
nreed@hawaii.edu

Outline
- Autonomous agents
- Adjustable autonomy
- Pilots for Saab’s TACSI simulator
- EASE (End-user Actor Specification Environment)
- Examples and discussion
- Summary

What is an Autonomous Agent?
Interacts with its environment
1. can sense its environment
2. make decisions, and
3. take action

What is Autonomy?
The breadth of goals that an agent has the authority to accomplish and the latitude it has to achieve those goals (Barber et al.)

What is Adjustable Autonomy?
- When agents (human and/or software/hardware) in a system dynamically change the allocation of authority and latitude for achieving goals among themselves.

Why Have Adjustable Autonomy?
- Essential - enables the use of systems where otherwise impossible/difficult
 - sensor deficiencies, unusual events, cost/time, complexity, unanticipated situations, personal preferences, physical limitations, moral questions,
- Useful - faster/easier development
 - incremental development, faster testing, debugging, users have control via interfaces
- Result – powerful and flexible systems
A User Controlled Approach to Adjustable Autonomy

Application: Simulation Environments
- Highly complex, real-time training and testing simulation environments
- Autonomous agents used in place of humans or other entities
- Examples
 - Pilots for aircraft
 - Agents for soccer
 - Agents for disaster management

Simulated Pilots in TACSI
- TACSI, Saab AB
 - commercial simulation environment
 - JAS Gripen - 4th gen. fighter aircraft + other AC
 - Full cockpit/dome interface
 - Steering control interface
- Simulated pilots
 - During aircraft design, development and testing
 - During pilot training and interactive simulations to reduce load on instructors

EASE (End-user Actor Specification Environment)
- Software to specify multi-agent actors in simulation environments
- Graphical development tools
 - Graphical actor design and behavior specification
 - Define goals, calculations, constants needed
- Runtime engine/debugger
 - Visualize actor behavior and multi-agent system
 - Monitor internal structures
 - On-line modifications to actor
 - Supports adjustable autonomy
- Designed and implemented at Linköping University

EASE/TACSI System Overview
- Agent system (EASE)
 - User Interface
 - Debugger
 - Runtime Engine

EASE Agent Hierarchy
- Agents =goals/subgoals"
 - Manager agents – non-leaf nodes
 - Contracts - connections between goals and subgoals
 - Engineer agents - (leaf nodes) negotiate over the actions (output) of the actor

Example of Adjustable Autonomy
- 1 EASE controlled aircraft
- 2 “hostile” aircraft
- 3 initial goals
 1. Avoid - avoid other aircraft - one agent will be created for each aircraft detected
 2. Hard deck - do not hit the ground
 3. Smooth - make turns smoothly
 - limited by aircraft controller and pilot tolerances
- User monitors and modifies behavior of Pilot
 - Add, Delete, or Suspend a goal
 - Edit specifications

HICSS, Jan. 2005
A User Controlled Approach to Adjustable Autonomy

1. Load file(s) with agent specifications
2. Open BOSS display

Add Destination!
Intended flight path of the actor

Agent Structure After Addition of Patrol Mission Agent

Suspending an Agent

Effect of Smooth Agent Suspension

sharper turn
(smooth suspended)

smoother turn
(smooth active)
User Termination of Agent

- User chooses how agent reports:
 - end success
 - end fail

- Agent and all its children are terminated
- Success/fail sent to contractor agent
- State transition in contractor agent according to specification (success/fail)
- Example - end waypoint agent

User terminates goal B, so go to next waypoint (C) from here

Development/Runtime Tools

Agent Behavior Specification – Actions and Functions

Discussion

- Powerful adjustable autonomy capabilities
- EASE is a prototype
 - Interfaces need improvement
 - User must learn EASE and design actor behaviors
 - Factors not explicitly encoded in EASE’s agent hierarchy or state machines are difficult to modify
 - Real-time response of environment may limit user’s control of actor (hard- or soft- real time)
- Other types of adjustable autonomy
 - Agent initiated only or both

Summary

- Adjustable Autonomy – useful or necessary
 - Increase the usability of agent systems
 - Increase agent development productivity
 - Allow use in complex environments
- EASE - GUI development environment
 - Specification of behavior
 - Add, modify, and delete actors’ behavior specifications/state machines
 - Monitoring/debugging capabilities – runtime engine
 - Observe goals and behavior of actor on-line
 - Observe calculations determining behavior
 - Adjustable autonomy capabilities
 - Add, suspend, and delete goals (agents comprising actor)
 - Add, modify or delete constants
 - Modify behavior specifications
Acknowledgements

- Funding provided by:
 - Saab AB, Operational Analysis Division
 - The Swedish Government under the NUTEK Complex Technical Systems program
 - Center for Industrial Information Technology (CENIIT)
 - The network for real-time research and education in Sweden (ARTES)

- Thanks to:
 - Paul Scerri and Per-Magnus Olsson
 - Engineers at Saab
 - Faculty and other students at Linköping University and the University of Hawaii

Thank you