Lecture 9: A closer look at terms

• Theory
 – Introduce the == predicate
 – Take a closer look at term structure
 – Introduce strings in Prolog
 – Introduce operators

• Exercises
 – Practical session
Comparing terms: \texttt{==/2}

- Prolog contains an important predicate for comparing terms.
- This is the identity predicate \texttt{==/2}.
- The identity predicate \texttt{==/2} does not instantiate variables, that is, it behaves differently from \texttt{=/2}.
Comparing terms: ==/2

- Prolog contains an important predicate for comparing terms
- This is the identity predicate ==/2
- The identity predicate ==/2 does not instantiate variables, that is, it behaves differently from /=2

?- a==a.
 yes
?- a==b.
 no
?- a=='a'.
 yes
?- a==X.
 X = _443
 no
Comparing variables

- Two different uninstantiated variables are not identical terms
- Variables instantiated with a term T are identical to T
Comparing variables

- Two different uninstantiated variables are not identical terms.
- Variables instantiated with a term T are identical to T.

```
?- X==X.  
X = _443  
yes

?- Y==X.  
Y = _442  
X = _443  
no

?- a=U, a==U. 
U = _443  
yes
```
Comparing terms: \(\neq/2 \)

- The predicate \(\neq/2 \) is defined so that it succeeds in precisely those cases where \(=/2 \) fails.
- In other words, it succeeds whenever two terms are **not identical**, and fails otherwise.
Comparing terms: \(\neq /2 \)

- The predicate \(\neq /2 \) is defined so that it succeeds in precisely those cases where \(=/2 \) fails
- In other words, it succeeds whenever two terms are not identical, and fails otherwise
Terms with a special notation

• Sometimes terms look different, but Prolog regards them as identical
• For example: a and 'a', but there are many other cases
• Why does Prolog do this?
 – Because it makes programming more pleasant
 – More natural way of coding Prolog programs
Arithmetic terms

• Recall lecture 5 where we introduced arithmetic
• +, -, <, >, etc are functors and expressions such as 2+3 are actually ordinary complex terms
• The term 2+3 is identical to the term +(2,3)
Arithmetic terms

- Recall lecture 5 where we introduced arithmetic
- $+, -, <, >, \text{etc}$ are functors and expressions such as $2+3$ are actually ordinary complex terms
- The term $2+3$ is identical to the term $+ (2, 3)$
Summary of comparison predicates

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>=</code></td>
<td>Unification predicate</td>
</tr>
<tr>
<td><code>\=</code></td>
<td>Negation of unification predicate</td>
</tr>
<tr>
<td><code>==</code></td>
<td>Identity predicate</td>
</tr>
<tr>
<td><code>\==</code></td>
<td>Negation of identity predicate</td>
</tr>
<tr>
<td><code>=:=</code></td>
<td>Arithmetic equality predicate</td>
</tr>
<tr>
<td><code>=\=</code></td>
<td>Negation of arithmetic equality predicate</td>
</tr>
</tbody>
</table>
• Another example of Prolog working with one internal representation, while showing another to the user

• Using the | constructor, there are many ways of writing the same list

?- [a,b,c,d] == [a|[b,c,d]]. yes
?- [a,b,c,d] == [a,b,c|[d]]. yes
?- [a,b,c,d] == [a,b,c,d|[[]]]. yes
?- [a,b,c,d] == [a,b|[c,d]]. yes
Prolog lists internally

- Internally, lists are built out of two special terms:
 - `[]` (which represents the empty list)
 - `'.'` (a functor of arity 2 used to build non-empty lists)
- These two terms are also called list constructors
- A recursive definition shows how they construct lists
Definition of prolog list

• The empty list is the term []. It has length 0.
• A non-empty list is any term of the form \((\text{term,}\text{list})\), where \text{term} is any Prolog term, and \text{list} is any Prolog list. If \text{list} has length \(n\), then \((\text{term,}\text{list})\) has length \(n+1\).
A few examples...

?- (a,[]) == [a].
yes

?- (f(d,e),[]) == [f(d,e)].
yes

?- (a,.(b,[])) == [a,b].
yes

?- (a,.(b,(f(d,e),[]))) == [a,b,f(d,e)].
yes
Internal list representation

- Works similar to the | notation:
- It represents a list in two parts
 - Its first element, the *head*
 - the rest of the list, the *tail*
- The trick is to read these terms as trees
 - Internal nodes are labeled with .
 - All nodes have two daughter nodes
 - Subtree under left daughter is the head
 - Subtree under right daughter is the tail
Example of a list as tree

- Example: [a,[b,c],d]
Examining terms

• We will now look at built-in predicates that let us examine Prolog terms more closely
 – Predicates that determine the type of terms
 – Predicates that tell us something about the internal structure of terms
Type of terms

Terms

Simple Terms
- Constants
 - Atoms
- Variables
 - Numbers

Complex Terms
Checking the type of a term

- atom/1: Is the argument an atom?
- integer/1: ... an integer?
- float/1: ... a floating point number?
- number/1: ... an integer or float?
- atomic/1: ... a constant?
- var/1: ... an uninstantiated variable?
- nonvar/1: ... an instantiated variable or another term that is not an uninstantiated variable?
Type checking: atom/1

?- atom(a).
yes

?- atom(7).
no

?- atom(X).
no
Type checking: atom/1

?- X=a, atom(X).
X = a
yes

?- atom(X), X=a.
no
Type checking: atomic/1

?- atomic(mia).
yes
yes

?- atomic(5).
yes
yes

?- atomic(lov{e}s(vinc{e}nt,mia)).
no
Type checking: var/1

?- var(mia).
no

?- var(X).
yes

?- X=5, var(X).
no
Type checking: nonvar/1

?- nonvar(X).
no

?- nonvar(mia).
yes

?- nonvar(23).
yes
The structure of terms

• Given a complex term of unknown structure, what kind of information might we want to extract from it?

 • Obviously:
 – The functor
 – The arity
 – The argument

 • Prolog provides built-in predicates to produce this information
The functor/3 predicate

- The functor/3 predicate gives the functor and arity of a complex predicate
The functor/3 predicate

- The functor/3 predicate gives the functor and arity of a complex predicate

?- functor(friends(lou,andy), F, A).
F = friends
A = 2
yes
The functor/3 predicate

- The functor/3 predicate gives the functor and arity of a complex predicate

 ?- functor(friends(lou,andy),F,A).
 F = friends
 A = 2
 yes

 ?- functor([lou,andy,vicky],F,A).
 F = .
 A = 2
 yes
functor/3 and constants

• What happens when we use functor/3 with constants?
functor/3 and constants

• What happens when we use functor/3 with constants?

?- functor(mia,F,A).
 F = mia
 A = 0
yes
functor/3 and constants

What happens when we use functor/3 with constants?

?- functor(mia,F,A).
 F = mia
 A = 0
 yes

?- functor(14,F,A).
 F = 14
 A = 0
 yes
functor/3 for constructing terms

- You can also use functor/3 to construct terms:
 – ?- functor(Term,friends,2).
 Term = friends(_,_)
 yes
Checking for complex terms

complexTerm(X):-
 nonvar(X),
 functor(X,_,A),
 A > 0.
Arguments: arg/3

- Prolog also provides us with the predicate arg/3
- This predicate tells us about the arguments of complex terms
- It takes three arguments:
 - A number N
 - A complex term T
 - The Nth argument of T
Arguments: arg/3

- Prolog also provides us with the predicate arg/3
- This predicate tells us about the arguments of complex terms
- It takes three arguments:
 - A number N
 - A complex term T
 - The Nth argument of T

?- arg(2,likes(lou,andy),A).
A = andy
yes
Strings

- Strings are represented in Prolog by a list of character codes
- Prolog offers double quotes for an easy notation for strings

?- S = “Vicky“.
S = [86,105,99,107,121]
yes
Working with strings

• There are several standard predicates for working with strings

• A particular useful one is atom_codes/2

?- atom_codes(vicky,S).
S = [118,105,99,107,121]
yes
Operators

• As we have seen, in certain cases, Prolog allows us to use operator notations that are more user friendly

• Recall, for instance, the arithmetic expressions such as 2+2 which internally means +(2,2)

• Prolog also has a mechanism to add your own operators
Properties of operators

• Infix operators
 – Functors written between their arguments
 – Examples: + - = == , ; . -->

• Prefix operators
 – Functors written before their argument
 – Example: - (to represent negative numbers)

• Postfix operators
 – Functors written after their argument
 – Example: ++ in the C programming language
Precedence

• Every operator has a certain precedence to work out ambiguous expressions

• For instance, does 2+3*3 mean 2+(3*3), or (2+3)*3?

• Because the precedence of + is greater than that of *, Prolog chooses + to be the main functor of 2+3*3
Associativity

- Prolog uses associativity to disambiguate operators with the same precedence value.
- Example: 2+3+4
 Does this mean \((2+3)+4\) or \(2+(3+4)\)?
 - Left associative
 - Right associative
- Operators can also be defined as non-associative, in which case you are forced to use bracketing in ambiguous cases.
 - Examples in Prolog: \(\texttt{:-} \) \(\texttt{-->}\)
Defining operators

• Prolog lets you define your own operators

• Operator definitions look like this:

```prolog
:- op(Precedence, Type, Name).
```

– Precedence: number between 0 and 1200

– Type: the type of operator
Types of operators in Prolog

- yfx left-associative, infix
- xfy right-associative, infix
- xfx non-associative, infix
- fx non-associative, prefix
- fy right-associative, prefix
- xf non-associative, postfix
- yf left-associative, postfix
Operators in SWI Prolog

1200	xfx	\Rightarrow, $!-$		
1200	fx	$!-$, $?-$		
1150	fx	dynamic, discontiguous, initialization, module_transparent, multifile, thread_local, volatile		
1100	xfy	$;	$, $	$
1050	xfy	\Rightarrow	$\text{op}^{*\Rightarrow}$	
1000	xfy	$,$		
954	xfy	\backslash		
900	fy	$\backslash+$		
900	fx	\sim		
700	xfx	$<$, $=$, $=$., $=@=, =:=, =<, ===, =\Rightarrow, =>, =>=, @<, @=\Rightarrow, @>, @>=, \\=, \\=, is		
600	xfy	$:$		
500	yfx	$+,-,\backslash,\\/,\text{xor}$		
500	fx	$+,-,?,$		
400	yfx	$\ast,\div,\text{rdiv},\text{\textless\textgreater}$, mod, rem		
200	xfx	$\ast\ast$		
200	xfy	\wedge		
Next lecture

• Cuts and negation
 – How to control Prolog's backtracking behaviour with the help of the cut predicate
 – Explain how the cut can be packaged into a more structured form, namely negation as failure