ICS 491: Parallel Algorithms
Homework 1

Due: February 20, 2014

1 Prefix minima

Given an array \(A = [a_1, a_2, \ldots, a_n] \), design a parallel algorithm that computes an array \(B = [b_1, b_2, \ldots, b_n] \) such that each element \(b_i = \min(a_1, a_2, \ldots, a_i) \), i.e. is the minimum among the first \(i \) elements of \(A \). Your algorithm should run in \(O(\log n) \) time and \(O(n) \) work. Write down the pseudocode and prove correctness, time and work complexities of your algorithm.

2 Bubble sort network

Use the 0-1 principle to prove the correctness of the Bubble sort network.

3 ShearSort: sorting on square matrices

Consider the following algorithm for sorting items in a \(n \times n \) matrix:

- Repeat the following \(\log n \) times:
 1. Sort rows in alternating order: sort each odd-numbered row in increasing order and each even-numbered row in decreasing order.
 2. Sort each column in increasing order

(a) Assuming that the rows and columns are sorted using a sorting network, prove that the above algorithm sorts the matrix in a row-major order. (Hint: Use the 0-1 principle and consider how many rows remain to be sorted after each round)

(b) Analyze the running time of the algorithm.