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1 Priority search tree: cont

This section is a continuation of the last lecture on Priority Search Trees (PSTs) where we are
interested to dive deeper into the analysis of PSTs. Before going into details, we need to recall PST
with Pymax as the point with the largest y-coordinate and xmed as the median x-coordinate among
points in the input set S. A PST can be built up as shown in Figure 1 where Sleft and Sright are
obtained as follows:

Sleft = {P ∈ S \ {pymax} | P.x ≤ xmed}
Sright = {P ∈ S \ {pymax} | P.x > xmed}
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Figure 1: Building priority search tree.

To report all nodes in a subtree rooted at v, we can use the following pseudocode:

Algorithm 1 Report all points stored in the subtree rooted at node v of a PST

1: function Report(v)
2: if v 6= NULL then
3: Output(v)
4: Report(v.left)
5: Report(v.right)

1.1 Range Query

Let’s consider a range query in one dimensional space where we’re asked to report all points greater
than or equal to a real number qy. In this case, we can use the following pseudocode to report all
nodes above qy in a subtree rooted at v.
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Algorithm 2 Report only points that are above qy among the ones stored in the subtree rooted
at node v of a PST
1: function Report(v, qy)
2: if v 6= NULL then
3: if v.y ≥ qy then
4: Output(v)
5: Report(v.left, qy)
6: Report(v.right, qy)

The above pseudocode reports all the points above qy because any path from root v to any node is
in a non-decreasing order of y-coordinate (otherwise the property of PST doesn’t hold). Likewise,
the subtree of nodes needs to be reported is either connected and contains the root or it is empty.

The performance of PSTs is summarized in the following theorem.

Theorem 1. The total running time to report all points in a query range [qy,+∞] in a PST rooted
at v is:

T (v) = c · kv + c− 1

where kv is the number of reported points and c ≥ 1.

Proof. We prove the theorem by using the induction.
Inductive hypothesis: For all descendant nodes u of v:

T (u) = c · ku + c− 1

where ku is the total number of nodes above qy in a PST rooted at u.

For the base case where there is no point in the query above qy, the theorem is true. Now we show
that it’s also true for the PST rooted at v.

T (v) = 1 + T (v.left) + T (v.right)

= 1 + c · kv.left + c− 1 + c · kv.right + c− 1

= c− 1 + c(1 + kv.left + kv.right)

= c− 1 + c · kv

1.2 3-sided Range Query

Now, let’s look at 2D range query where we aim to find nodes within a 3-sided range (i.e. [xL, xR]×
[y,+∞]) as shown in Figure 2.

We follow the subsequent steps to report all nodes corresponding to the specified range:

• Find splitting vertex vsplit.

• Follow left path down to xL (left boundary) and report all points in the subtrees hanging
from the right.
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Figure 2: 3-sided Range Query.

• Follow right path down to xR (right boundary) and report all points in the subtrees hanging
from the left.

The pseudocode shown in Algorithm 3 describes the query algorithm.

We start by finding the vertex where the search for xL and xR splits into different subtrees, as
shown in Figure 3. Below this spplitting vertex, all shaded subtrees are those whose x-coordinate
lies in the specified range. Therefore, we can report all points stored there that lie above the
y-coordinate using the Algorithm 2.

vsplit

xL xR

Figure 3: Querying a PST.

Finding the splitting vertex and traversing the two paths takes O(log n) time, and reporting the kv
points within a subtree rooted at v takes O(kv) time, as discussed in the previous section. Thus,
the running time to answer the 3-sided query is T (v) = O(log n) +

∑
v
kv = O(log n + k), where k

is the number of reported points.

The PST for n points uses O(n) space to store the data because every point is stored in exactly
one node.

Finally, the preprocessing time to build the data structure takes O(n log n) time. The reason is that
the y-coordinate PST associated with each node at x-coordinate PST takes O(n) to be constructed
with bottom-up approach. Considering the fact that the depth of the x-coordinate PST is of the
order O(log n), the total preprocessing time is bounded by O(n log n).
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Algorithm 3 3-sided Range Query

1: function 3-sided Query(v, [xL, xR], y)
2: . Find the vertex where the search paths split
3: while (v 6= NULL)and(v.xmed ≤ xL or xR < v.xmed) do
4: if v ∈ [xL, xR]× [y,+∞] then . Check if the point on the path needs to be reported
5: Output(v)

6: if v.xmed ≤ xL then
7: v = v.right
8: else
9: v = v.left

10: vsplit = v
11: v = v.left
12: if vsplit ∈ [xL, xR]× [y,+∞] then
13: Output(vsplit)

14: . Follow the left path
15: while v 6= NULL do
16: if v ∈ [xL, xR]× [y,+∞] then . Check if the point on the path needs to be reported
17: Output(v)

18: if xL ≤ v.xmed then
19: Report(v.right, y) . Report points in the right-hanging (shaded) subtree
20: v = v.left
21: else
22: v = v.right

23: v = vsplit.right
24: . Follow the right path
25: while v 6= NULL do
26: if v ∈ [xL, xR]× [y,+∞] then . Check if the point on the path needs to be reported
27: Output(v)

28: if v.xmed ≤ xR then
29: Report(v.left, y) . Report points in the left-hanging (shaded) subtree
30: v = v.right
31: else
32: v = v.left

2 Interval trees for orthogonal stabbing queries

In certain geometric applications like planar graphs, we might be interested in reporting the set
of line segments L associated with a window query w = [x0, x1] × [y0, y1]. (See Figure 4 for an
example.) This set L contains all line segments with at least one end point inside w, and those
segments that span the window w without having an end point inside w.

We can report all line segments with at least one endpoint inside w using algorithms and techniques
from Section 1. We can use 2 instances of 3-sided query i.e. q0 = [x0, x1] × [y0,+∞] and q1 =
[x0, x1] × [−∞, y1], and then report the intersections of the two queries in time O(log n + k0) +
O(log n + k1). An algorithm to find intersections q0 ∩ q1, would be to keep sorted lists of q0 and q1
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Figure 4: Query w = [x0, x1]× [y0, y1].

and then find the intersection in linear time O(k0+k1) using modified merge algorithm in mergesort.
However, in the worst case scenario, the two queries may report all n = k0 +k1 endpoints while the
intersection may contain only one element. By constructing 2D range trees with storage O(n log n),
and time O(log2 n + k) we can report all line segments with ends points in w. Applying fractional
cascading can reduce the query time further to O(log n + k) which is faster than O(log n + n).

What is left is how to handle efficiently those line segments that span our window query w without
any endpoint inside w? In other words, we are looking for line segments that cross two boundaries
of our window query w. If we know how to report all line segments that cross one boundary, say
[x0, x1], of w, we can easily check if they cross any of the remaining boundaries. We present first
a solution to a slightly simpler problem that can help us towards reporting those line segments
crossing w but with no end point inside w.

Stabbing query: Given a set of intervals I = {i1, . . . , in}, and a vertical line query `(q = x),
find all intervals that are crossed by `.

Claim 2. We can solve stabbing the query in O(n log n) and O(n) space.

We apply divide and conquer strategy to solve stabbing query problem. We construct recursively
a balanced BST over all end points of intervals in I, i.e. EI =

⋃
[il,ir]=i∈I{il.x, ir.x}. While doing

so, we augment this BST with extra data containing intervals from I that contains v.val in their
boundaries as shown in Algorithm 4.

Algorithm 4

1: function BuildInt(I)
2: v.val = median(EI) . key stored at node v
3: Imid ← {i ∈ I | il.x ≤ v.val ≤ ir.x}
4: Ileft ← {i ∈ I | ir.x < v.val}
5: Imid ← {i ∈ I | v.val < il.x}
6: v.data← Imid . augmented data
7: v.left← BuildInt(Ileft)
8: v.right← BuildInt(Iright)
9: return v.
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Figure 5: I = Ileft ∪ Imid ∪ Iright, and Stab(I, x) = {i3, i4, i1, i2}.

Figure 5 shows 8 line segments (intervals) with median being the right end point of interval
i4. The root of the interval tree divides the set of intervals I = {i1, . . . , i8} into 3 disjoint sets
Imid, Ileft, Iright, where the root contains Imid = {i3, i4, i5}. The left subtree will recursively store
Ileft = {i1, i2} and the right subtree will recursively store Iright = {i6, i7, i8}.

How do we store Imid? In order to retrieve all intervals that are stabbed by q = x, we can scan
the list of intervals stored at node v for intervals that contain x before going to the left or right
subtree depending on whether x is less than or greater than v.val. However, it may happen that
all n intervals are stored in the root, and checking for intervals containing x may take O(n) then
instead of O(k), the output size!

In order to prevent that, we store Imid in a more efficient way by storing Imid sorted by the x-
coordinate of start point in an increasing order, and another copy of I ′mid of Imid ordered by the
x-coordinate of end point in a decreasing order. To check if q = x is contained in some intervals in v,
we compare x with v.val and accordingly scan the list Imid or I ′mid till we find an interval that does
not contain x. In Figure 5, at the root of the tree, Imid = {i3 ≤ i4 ≤ i5} and I ′mid = {i3 ≥ i5 ≥ i4}.
To report the intervals that stored at this node and that contain the query point, if the query point
x is to the left (respectively, right) of v.val, we scan the intervals stored in Imid (respectively, I ′mid)
until the first interval that does not contain x. Note, that the ordering we chose for intervals in
Imid and I ′mid ensures that we encounter all the intervals that contain the query point before we
hit the first one that doesn’t. The pseudocode for answering the query on interval tree is presented
in Algorithm 5.

Algorithm 5

1: function QueryInt(v, x)
2: if v 6= NULL then
3: if t ≤ v.val then
4: ReportInt(Imid, left, x,≤) . O(kv + 1)
5: QueryInt(v.left, t)
6: else
7: ReportInt(I ′mid, right, x,≥) . O(kv + 1)
8: QueryInt(v.right, t)
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Algorithm 6

1: function ReportInt(I, direction, x, comparator)
2: for j = 1 to |I| do
3: if compartor(I[j].direction.x, x) = true then
4: output I[j]
5: else
6: break

Since, we store only 2 copies of each interval i in the entire tree, interval trees takes O(n) space.
To report all intervals containing x at node v, we need kv + 1 comparisons. The recurrence relation
is then given by

T (v) = O(1 + kv) + max{T (v.left), T (v.right)}
= O(log n + k) (because the tree is balanced).

The preprocessing time takes sorting complexity, as we need to build a balanced BST, sort all
intervals by start point, and again by end points. We can write the recurrence relation of BuiltInt
as follows:

T (n, h) = O(n) + T (|Ileft|, h− 1) + T (|Iright|, h− 1)

= O(nh)

= O(n log n).

Answering the window query w = [x0,×x1]× [y0 × y1]

In order to answer our original window query w, we can modify the data structure of augmented
data Imid stored in interval tree to be 1D range tree over y-axis instead of an ordered list over
x-axis. Range tree takes O(|Imid|) to store data, O(log |Imid| + kv) for querying its data, and
O(|Imid| log |Imid|) for preprocessing. Since we need to query a range tree at each node v visited
while querying the interval tree, it takes

∑
v∈Path(QueryInt(v,x))O(log n + kv) = O(log2 n + k) to

answering the window query.

3 Segment trees

Segments tree is another data structure that can be used to answer stabbing queries. It is more
general than interval trees as it can process any type of non-intersecting non-vertical line segments
(i.e., not only the horizontal ones), but at the price of increased storage O(n log n). As we did with
interval trees we first show how segment trees answer stabbing queries and then highlight how to
answer window queries.

Consider the set of line segments L = {`1, `2, `3, `4, `5} in the following diagram:

Observe that we cannot always define a total ordering over slanted line segments that preserves the
transitivity property. For example, if we consider `5 ≤ `4 ≤ `2 then by transitivity we would have
`5 ≤ `2. On the other hand, if we consider `2 ≤ `′4 ≤ `5 then we would have `2 ≤ `5. However, if
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Figure 6: Set of line segments L = {`1, `2, `3, `4, `5} with slabs S = {s−∞, s1, . . . , s9, s∞}.

we divide the plane into slabs defined by all endpoints (shown by the dashed lines in Figure 6), we
can define a total ordering within each slab that is transitive.

We can build a balanced BST with leaves corresponding to each of the slabs S = {s−∞, s1, . . . , s9, s∞},
ordered on the natural left-to-right ordering of the slabs (by the x-coordinate). Each internal node
v in the BST will correspond to slab that is the union of all slabs within the subtree rooted at v.
The root will then correspond to the slab [−∞,∞], that is the whole x-axis. Next we augment the
BST node v with a list of line segments ` that fully cross any slab within its subtree but do not
cross the parent node’s slab.

`1.left

s−∞ ∪ s1

`1.right

s2 ∪ s3

s−∞ s1 s2 s3 s4 s5 s6 s7 s8 s9 s∞

`3.left

s4 ∪ s5

`3.right

s6 ∪ s7

`4.right

s8 ∪ s9

`2.left

s−∞..s3

`2.right

s4..s7

`1.left

s8..s∞

`4.left

s−∞..s7

`5.left

s−∞..s∞

Figure 7: A segment tree for Figure 6 with slabs as leaves, and union of slabs as internal nodes.

Invariant Each line segment ` is stored in a node of v such that

[v.xleft, v.xright] ⊆ [`.xleft, `.xright] ∧ [parent(v).xleft, parent(v).xright] 6⊆ [`.xleft, `.xright].

Claim 3. Each segment will be stored in at most 2 nodes at each level of segment tree.

The proof of the claim above can be found in chapter 10 in [BCKO08]. Based on the result above,
the segment tree would take O(n log n) space because we store at most 2n nodes at each level of
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the BST, and because the tree is balanced. In order to answer stabbing queries, we locate the
slabs that contains the query q = x from root till leaves level (a single branch) and report all line
segments containing q. This takes O(log n) to locate the leaf node, and k to report the output.
Hence, it takes O(log n + k) to answer stabbing query.

Answering the window query w = [x0,×x1]× [y0 × y1]

In order to answer our original window query w, we use 1D range tree to store line segments sorted
by y-axis. Note that within each slab in segment tree, we have total ordering of line segments and
therefore we can build up a BST without affecting the result. The same analysis for interval trees
applies here and we would have O(log2 n+k) query time for segment trees. Observe that, compared
to interval trees, segment trees don’t improve the query time, yet require more space. The power
of segment trees comes from the fact that we can answer queries on non-horizontal segments, not
just horizontal line segments (intervals) that interval trees are restricted to.
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