
ICS 621: Analysis of Algorithms Fall 2019

Lecture 11
Prof. Nodari Sitchinava Scribe: Jeremy Ong, Sushil Shrestha

1 Geometric Data Structures

1.1 Range Queries

The problem statement for the range queries is that given a bunch of points in high dimension, retrieve all
the points bounded by certain boundary.

x

y

Figure 1: Problem statement: points within the bound

One way to find all the points bounded by a given boundary is to go through all the points linearly and
report a point if it lies within the boundary. That would cost linear time O(n) to find the points, if it takes
constant time to perform each check. We can have better retrieval time which is less than O(n) and for that
let’s look at some of the available algorithms.

1.2 1D range query

Before we move on to higher dimensions, let’s start with one dimensional range queries.

Given a sequence of number(S) as an input and [XL, XR] as a range of query, the 1D range query should
output all the points that lies within that range ({X : XL ≤ X ≥ XR ∀X ∈ S})

Here we assume that preprocessing of the input is allowed and the data is sorted as a step in preprocessing.
We will use a Binary Search Tree(T ) to store the sorted data. As a first step we will search our BST for
XL and XR and find the leaf nodes for XL and XR. Then we can report all the nodes in between those leaf
nodes as our output that lies in between XL and XR. To accomplish that we have to find split node in our
BST where paths to XL and XR diverges in our tree. Then we can traverse the left and right tree of the
split vertex and report the subtrees that lie within the specified range.

1



xXL XR

Figure 2: Single dimensional range query

Algorithm 1

1: procedure 1DRangeQuery(T.root, [xL, xR])
2: v = T.root
3: while (v 6= leaf) and (v.key ≤ xL or v.key > xR) do . find the splitting node
4: if xR ≤ v.key then
5: v ← v.left
6: else
7: v ← v.right
8: end if
9: end while . v will be our splitting node

10: vsplit ← v . Traverse the left path and report points
11: v ← vsplit.left
12: while v 6= leaf do
13: if xL ≤ v.key then
14: report(v.right)
15: v ← v.left
16: else
17: v ← v.right
18: end if
19: end while
20: v ← vsplit.right . Traverse the right path and report points
21: while v 6= leaf do
22: if xR ≥ v.key then
23: report(v.left)
24: v ← v.right
25: else
26: v ← v.left
27: end if
28: end while
29: if v.key = xR or v.key = xL then
30: report(v)
31: end if
32: end procedure

Algorithm 1 first finds the Vsplit for a given range. Then it traverses the path from Vsplit vertex to xL and
reports all the right subtrees hanging off the path. For the path from the Vsplit to xR, similar process is
followed to report all left subtrees hanging off the path.

Now for the analysis of the algorithm, the space complexity for the binary search tree is O(n) and it will

2



Vsplit

T.root

XL XR

Figure 3: Selected Subtree

take O(n log n) to build the binary search tree. For the query part, report(T ) will take linear time with
the number of items needed to be reported i.e. O(k) where k is number of points reported. And searching
the leaf nodes for XL and XR requires O(log n) time. So total query time is O(log n + k).

1.3 2D orthogonal range queries: k-d trees

Given a sequence of points S on XY plane and bounds [XL, XR] × [YL, YR], our goal is to find all points
that lie within that the rectangular range.

Y

XXL XR

YR

YL

Figure 4: 2D range query

Similar to 1D range query, we can use binary search tree to find the points within the range of the bound.
To create a binary search tree from the given set of points, we split sequence of points S by a vertical line(l1)
into two subsets with nearly equal number of points. Then we will use the line (l1) as the key to our node
in binary search tree. The left subtree of this node will store all the points on and left of the line l1 and
right subtree of the node will store the points right of the line l1. Next we equally divide the points on the
left of the line by a horizontal line and store horizontal line(l2) as the key for left child of l1. Then store all
the points above the horizontal line as right child of l2 and store all the points below and on the horizontal
line as left child of l2. We will perform similar division on the points to the right of the original vertical line
l1. We now have four sections on our plane, we will continue to divide those sections recursively (first by
vertical line and then by horizontal line) until each section only contains single point.

3



l1

l2

l3

l4

l5

l6

l7

X

Y

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

l8

l9

l1

l2 l3

l4 l5 l6 l7

l8 l9

p1 p4

p5 p2 p3

p6 p8

p9 p7 p10

Figure 5: Constructing k-d tree by partitioning the coordinates

Algorithm 2

1: procedure BuildKdTree(S)
2: Find the median Xmid among S
3: (SL, SR)← Partition(S,Xmid) . Partition S around Xmid

4: Find the median Ymid among SL

5: (S′
L, S

′′
L)← Partition(SL, Ymid) . Partition SL around Ymid

6: Find the median Y ′
mid among SR

7: (S′
R, S

′′
R)← Partition(SR, Y

′
mid) . Partition SR around Y ′

mid

8: Create 3 nodes v, u, w with 3 partition lines x = Xmid, y = Ymid, and y = Y ′
mid, respectively

9: v.left← u; v.right← w
10: u.left = BuildKdTree(S′

L) . Recursively construct k-d trees on the four quandrants
11: u.right = BuildKdTree(S′′

L)
12: w.left = BuildKdTree(S′

R)
13: w.right = BuildKdTree(S′′

R)
14: return v
15: end procedure

For the analysis of the algorithm, the cost for building the k-d tree is the time required to find the median
among the data points partitioned around the median plus the recursive calls of the function. Given a list
of points, finding median of data points can be achieved in linear time. Hence the cost of building a k-d tree
can be written as:

T (n) = O(n) + 4T (n/4)

Using master theorem, the cost solves to O(n log n)

While building the k-d tree we partitioned the sequence of points into different regions and then we created
nodes for every bounding line. The nodes in the k-d tree represents a bounding box enclosing certain nodes
based on their position. So to perform a range query on the sequence of points modeled as k-d tree, if the
range includes full region represented by some node then the total subtree is reported back. If the regions are
partially inside the query range, we recurse. At the leaf points are checked directly against the boundaries
and are partially reported.

4



Algorithm 3

1: procedure SearchKdTree(v,R) . R is a range query [xL, xR]× [yL, yR]
2: if v is leaf and v lies in the region then
3: Report(v)
4: else if region(v.left) is fully contained in R then
5: Report(v.left)
6: else if region(v.left) intersects R then
7: SearchKdTree(v.left, R)
8: else if region(v.right) is fully contained in R then
9: Report(v.right)

10: else if region(v.right) intersects R then
11: SearchKdTree(v.right,R)
12: end if
13: end procedure

For the analysis of the algorithm, report takes O(k) time where k is the number of reported points. The
reporting linear time will account for line 4, 5, 8 and 9 in Algorithm 3. For lines 6, 7, 10 and 11, we have
to find number of times the boundary of the range intersects region(v). To find out the number of such
regions, we can find number of regions intersected by any vertical line and use it as upper bound of regions
intersected by left and right edge of query rectangle. We can similarly find the upper bound of regions
intersected by top and bottom edge of query rectangle.

Let Q(n) be the number of intersected regions in a k-d tree. If we consider first vertical split and second
horizontal split across the set of points, we have 4 regions with n/4 points each. And two of four regions
correspond to intersected region so we can count the number of intersected regions recursively. The recurrence
relation can be written as:

Q(n) = 2 + 2 ·Q(n/4)

= O(
√
n)

The amount of time it takes for 2D range query is O(
√
n + k).

2 Range Trees

But can we do better than O(
√
n + k)? Using a range tree instead of a kd-tree, we can get O(log2 n + k),

which is quite a bit better than our previous upper bound.

First, let us consider that in a 1-D query, reporting a specific subtree of nodes rooted at v (Report(v)) is
equivalent to performing a call of 1DRangeQuery(v, [x′

L = −∞, x′
R = ∞]) which is a 0-sided query on

those points. Then if we were to only consider the results from this call that are within a specific y range,this
is equivalent to a 2-D query with range [yL, yR]. To do so, we could store the x and y-coordinates in each
leaf node, then check the y-coordinate of each one in the subtree. However, this would necessitate examining
every leaf in the subtree, as y-coordinates are only in heap order, not sorted.

So how can we do this quickly? If, at each node of T , we store the points of that subtree in a BST but sorted
by y-coordinate (which we call v.ytree), we would only need to perform a binary search to get our the first
node in our y range, then iterate across the points until we reach a point with a y-coordinate greater than
our range. This would only require examining O(kv) points, where kv is the number of points in the subtree
to be reported, plus O(log n) work for the binary search, giving us O(kv + log n), the same as a 1-D query.

5



Figure 6: A 2-D range tree. Once a subtree is to be reported, instead go to the y-sorted BST stored at the
node.

Algorithm 4

1: procedure 2DRangeQuery(T.root, [xL, xR], [yL, yR])
2: for each v in the traversal from the splitting point down to xL do
3: if the next move goes left then
4: 1DRangeQuery([yL, yR], v.right.ytree)
5: end if
6: end for
7: for each v in the traversal from the splitting point down to xR do
8: if the next move goes right then
9: 1DRangeQuery([yL, yR], v.left.ytree)

10: end if
11: end for
12: end procedure

The analysis of this algorithm is similar to that of a 1-D range query. O(log n) nodes are examined to
traverse down T on the left and right paths. At each node v that is reached, we may need to report the
leaves of that subtree, requiring O(kv + log n) time for each node. This gives us total runtime of:

∑
v

O(kv + log n)

We know that the summation of kv over all v is k, the total number of nodes to be reported. Since there are
O(log n) nodes v to be traversed down and possibly reported, this gives us O(k + log2 n) total runtime.

How much space do we need to store all of these extra y-sorted BSTs? First, we must realize that at each
level of T , the y-sorted BSTs stored at that level contain exactly the leaves of the entire tree, T . So if we
have O(n) extra storage at each level of T , and T has O(log n) levels, we have the space requirement of
O(n log n).

It should be noted that using fractional cascading, we can reduce this runtime to O(k + log n). However,
we will not cover this technique here.

6



3 3-D Queries

When we only need to know whether one of our search parameters is below (or above) a certain value, we
can perform a 3-sided query. This is equivalent to 2DRangeQuery(T.root, [xL, xR], [−∞, yR]). Trivially,
we could answer this with a 4-sided query algorithm, but doing so in O(k + log n) time with range trees
(with fractional cascading) requires O(n log n) extra space. When we only need a 3-sided query, we can do
better.

Figure 7: A 3-sided range query for all points between two x values and below an upper y value.

By using a priority search tree (PST) (similar to a treap in concept), we can reduce space usage without
increasing our time bound. Like a treap, a priority search tree is a binary tree with priorities in heap order.
For a 2-D query, we can store the x-coordinates of our points as the keys and the y-coordinates as priorities,
with each node in the tree representing a point. When splitting by the x-coordinate of the current node, the
resulting tree would have keys in BST order and is known as a Cartesian tree.

However, performing this splitting by the x-coordinate of the current node can result in an unbalanced tree,
possibly with a depth of n. So instead, we can split each level based on the median y-coordinate of points,
so that subtrees at each level are (roughly) equal in size.

7



(6,8)

(7,7)

(8,6)

(4,5)

(5,3)

(2,4)

(3,1)

Figure 8: A priority search tree, split by xmid, with the vertical grey lines showing the splits.

The following algorithm constructs such a PST:

Algorithm 5

1: procedure Build-PST(S)
2: Create node v that is the point in S with the greatest y-coordinate
3: xmid ← median among x-coordinates of points in S
4: v.mid← xmid

5: (SL, SR)← Partition(S, xmid)
6: v.left← Build-PST(SL)
7: v.right← Build-PST(SR)
8: return v
9: end procedure

Where Partition(S, xmid) partitions the points in S into those to the left of xmid and those to the right.
Finding the median and a call to Partition takes O(n) time, giving us a recurrence relation of:

T (n) = 2T
(n

2

)
+ O(n)

Which solves to O(n log n) to build our priority search tree. Since we are only storing n nodes, each using a
constant amount of space, we have O(n) total space used, much better than the O(n log n) of a range tree.

When performing a 3-sided query on the PST, we traverse down the tree to the splitting point. Then on the
left half of the split, traverse down and report the right subtree of any nodes if going to the left. Traversing
the right half of the split is symmetrical.

Since T is in max-heap order with respect to y-coordinates, reporting all nodes in a subtree rooted at v with
a y-coordinate greater than some yL can be done by recursing down on each child node with y-coordinate
greater than yL.

8



Algorithm 6

1: procedure Report-PST(v, yL)
2: if v 6= NIL AND v.y ≥ yL then
3: Output v
4: Report-PST(v.left, yL)
5: Report-PST(v.right, yL)
6: end if
7: end procedure

Algorithm 7

1: procedure 3-sided-Query(T, [xL, xR], yL)
2: Search T for the splitting point vsplit on x-coordinates, reporting nodes on the path that fall within

[xL, xR]× [yL,∞]
3: v ← vsplit
4: while v 6= NIL do
5: if v.y ≥ yL then
6: output v
7: end if
8: if xL ≤ v.mid then
9: Report-PST(v.right, yL)

10: v ← v.left
11: else
12: v ← v.right
13: end if
14: end while
15: while v 6= NIL do
16: if v.y ≥ yL then
17: output v
18: end if
19: if xR ≥ v.mid then
20: Report-PST(v.left, yL)
21: v ← v.right
22: else
23: v ← v.left
24: end if
25: end while
26: end procedure

So we have a total time to traverse down the tree in both directions of O(log n). Additionally, the total time
for reporting all nodes is O(k), giving a total runtime of O(log n + k).

9


