The Autonomic Nervous System

Overview
• Primary function - homeostasis
 – including both sensory and motor
• Control over smooth & cardiac muscle and glands
• Little conscious control - input from hypothalamus, medulla and indirectly from
 limbic and cerebrum (reaction to situations seen or heard)
• Divided into sympathetic and parasympathetic
 – Many regions with dual innervation (opposing)

Sensory Input
• General visceral sensory neurons
• Receptors include interoceptors - chemoreceptors and mechanoreceptors
• Usually not consciously perceived
 – Exceptions - visceral nausea or pain, bladder fullness, angina

Motor Output
• General visceral motor neurons
• Excitatory or inhibitory of smooth or cardiac muscle or gland
 – e.g. pupil size, accommodation, vessel diameter, heart rate and force of
 contraction, peristalsis, secretion
• Series of two motor neurons
 – 1) CNS to autonomic ganglion - preganglionic neuron (myelinated and cell body in CNS)
 – 2) Autonomic ganglion to effector - postganglionic neuron (unmyelinated
 and cell body in ganglion)
 – Neurotransmitter may be either ACh or norepinephrine
 – Autonomic ganglion contain synapses (possible integration)

Autonomic NS Innervation (graphic)
Preganglionic Neurons
• Sympathetic - cell bodies in lateral gray horns of T1-12 and L1-2
 (thoracolumbar division)
• Parasympathetic - cells bodies in nuclei of 4 cranial nerves (oculomotor, facial,
 glossopharyngeal and vagus) and lateral gray horns of S2-4 (craniosacral
 division)
 – Vagus is 80% parasympathetic outflow

Autonomic Motor Pathways (graphic)

Autonomic Ganglia
• Sympathetic trunk ganglia (paravertebral ganglia) - chain of ganglia on either
 side of spinal cord
 – White rami communicates
 – Total 22, 3 cervical, 11 or 12 thoracic, 4 or 5 lumbar, 4 or 5 sacral
– Typically innervate organs above diaphragm
– Vertical collaterals - sympathetic chains (trunk)

• Sympathetic prevertebral ganglia (collateral ganglia) - anterior to spinal cord near specific arteries (celiac, superior and inferior mesenteric)
 – Typically innervate organs below diaphragm

• Some sympathetic preganglion fibers don’t synapse in ganglion
 – Some form splanchnic nerves
 – Some provide neuro-secretory function supplying adrenal medulla (primarily norepinephrine & epinephrine)

• Parasympathetic terminal ganglia (intramural ganglia) - located in or near effector organ
 – Those near are from cranial portion and include ciliary, pterygopalatine, submandibular, and otic ganglia

• Autonomic plexuses - localized aggregations of both sympathetic and parasympathetic motor neurons, some sympathetic ganglia, and some autonomic sensory neurons, frequently associated with major arteries

Sympathetic Ganglia (graphic)

Sympathetic Ganglion (graphic)

Autonomic Motor Pathways (graphic)

Postganglionic Neurons

• Sympathetic - divergence pre to postganglionic neurons (1:20) to various effectors

• Parasympathetic - divergence pre to postganglionic neurons (1:4) of single effector

Autonomic Innervation

• Most structures receive dual inervation
 – Hypothalamus maintains balance between them

• Those with sympathetic only - sweat glands, arrector pili muscles, adipose cells, kidneys and most blood vessels

• Those with parasympathetic only - lacrimal glands

Autonomic Neurotransmitters

• Cholinergic (Ach) - may be excitatory or inhibitory (unlike skeletal muscles)
 – All autonomic preganglionic neurons
 – All parasympathetic postganglionic neurons
 – Some sympathetic postganglionic neurons (most sweat glands and some blood vessels in skeletal muscle)

• Adrenergic (norepi or epi) - may be excitatory or inhibitory
 – Most sympathetic postganglionic neurons - norepinephrine
 – Adrenergic response more prolonged than ACh
 • Greater divergence at sympathetic ganglia
 • Slower removal of norepi from synaptic cleft - dependent on re-uptake by presynaptic membrane or a slower enzymatic inactivation
• Neuro-secretory release of norepi and epi from adrenal medulla (liver ultimately, enzymatically breaks them down)

Autonomic Synapses (graphic)

Membrane Receptors

- **Cholinergic receptors**
 - Nicotinic (nicotine mimics activity) - both sympathetic and parasympathetic postganglionic neurons
 - Always excitatory
 - Muscarinic - (mushroom poison mimics activity) muscles and glands (effectors) innervated by parasympathetic postganglionic neurons and most sweat glands and some blood vessels innervated by sympathetic postganglionic neurons
 - Usually excitatory
 - Sometimes inhibitory - e.g. smooth muscle sphincters of gastrointestinal tract

- **Andrénergic receptors** - found on membranes of sympathetic effectors
 - Alpha receptors with subtypes - stimulated more by norepi or epi
 - Beta receptors with subtypes - stimulated more by epi
 - Alpha and Beta -1 are excitatory, -2 are inhibitory
 - Agonist - mimics neurotransmitter or hormone release (promotes effect), antagonist - blocks receptors (minimizes effect) e.g. beta blockers ↓ BP

Parasympathetic Action

- Energy conservation/restorative activities
- Increased SLUDD (salivation, lacrimation, urination, digestion defecation) and decreased heart rate, airway passage, pupil size
- Predominant control during normal activity
- Paradoxical fear (causing urination or defecation)

Sympathetic Action

- “E” response: exercise, emergency, excitement, embarrassment
- Predominant control during during physical or emotional stress
- Pupils dilate, HR, force of contraction and BP increase, vasoconstriction of non-essential vessels, rate and depth of breathing increases, blood glucose level increases (liver glycogen), digestive activity declines

Autonomic Reflexes

- Similar to somatic reflexes with little or no recognition by cerebrum
- Include HR, BP, respiration, digestion, defecation and urination
- Reflex centers include cardiovascular, respiratory, swallowing and vomiting centers in medulla and temperature control center in hypothalamus.

Autonomic Pathways

- Hypothalamus is primary ANS control center with inputs from emotions, visceral function, olfaction, taste, temperature, osmolarity and blood component levels
• Posterior and lateral portions - sympathetic
• Anterior and medial portions - parasympathetic
• Cerebral control at two levels - emotional response to outside stimulus, biofeedback control